Овощеводство. Садоводство. Декорирование участка. Постройки в саду

Сонник шептать на ухо девушке

Cонник шлепки токование сонника, к чему снится шлепки токование сонника во сне видеть К чему снится потерять шлепок

Блока «Я никогда не понимал» и А

Афанасий Афанасьевич Фет

Что такое биотоп и биоценоз в биологии?

Астения: симптомы, лечение Астено тревожный синдром что

Химические растворы Что такое гомогенный раствор

Организация и вооружение мотострелкового отделения Состав мотострелкового отделения на бтр

Опорно-двигательная система животных (эволюция строения)

Явление диффузии. Что такое диффузия? Диффузия физическое явление

Калькулятор пеней по налогам и страховым взносам

Картины архипа куинджи с названиями

Порядок расчета и уплаты авансовых платежей по налогу на прибыль

Листовая свекла мангольд Мангольд когда начинать кушать и какие части

Какие блюда можно приготовить из чечевицы просто и вкусно Простые блюда из красной чечевицы

Классификация и свойства сложных неорганических веществ. Взаимосвязь

Классификация неорганических веществ и их номенклатура основаны на наиболее простой и постоянной во времени характеристике -

химическом составе , который показывает атомы элементов, образующих данное вещество, в их числовом отношении. Если вещество из атомов одного химического элемента, т.е. является формой существования этого элемента в свободном виде, то его называют простым веществом ; если же вещество из атомов двух или большего числа элементов, то его называют сложным веществом . Все простые вещества (кроме одноатомных) и все сложные вещества принято называть химическими соединениями , так как в них атомы одного или разных элементов соединены между собой химическими связями.

Номенклатура неорганических веществ состоит из формул и названий. Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил .

Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы

и неметаллы . К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.

При составлении названий веществ обычно применяют русские наименования элементов, например, дикислород, дифторид ксенона, селенат калия. По традиции для некоторых элементов в производные термины вводят корни их латинских наименований:

Ag - аргент

N - нитр

As - арс, арсен

Ni - никкол

Au - аур

O - окс, оксиген

C - карб, карбон

Pb - плюмб

Cu - купр

S - сульф

Fe - ферр

Sb - стиб

H - гидр, гидроген

Si - сил, силик, силиц

Hg - меркур

Sn - станн

Mn - манган

Например

: карбонат, манганат, оксид, сульфид, силикат.

Названия простых веществ состоят из одного слова - наименования химического элемента с числовой приставкой, например:

Используются следующие числовые приставки

:

1 - моно

7 - гепта

2 - ди

3 - три

9 - нона

4 - тетра

5 - пента

11 - ундека

6 - гекса

12 - додека

Неопределенное число указывается числовой приставкой

n - поли.

Для некоторых простых веществ используют также специальные названия, такие, как О

3 - озон, Р 4 - белый фосфор.

Химические формулы сложных веществ составляют из обозначения электроположительной (условных и реальных катионов) и электроотрицательной (условных и реальных анионов) составляющих, например,

CuSO 4 (здесь Cu 2+ - реальный катион, SO 4 2- - реальный анион) и PCl 3 (здесь P +III - условный катион, Cl - I - условный анион).

Названия сложных веществ составляют по химическим формулам справа налево. Они складываются из двух слов - названий электроотрицательных составляющих (в именительном падеже) и электроположительных составляющих (в родительном падеже), например:

CuSO 4 - сульфат меди(II)
PCl 3 - трихлорид фосфора
LaCl 3 - хлорид лантана(III)
СО - монооксид углерода

Число электроположительных и электроотрицательных составляющих в названиях указывают числовыми приставками, приведенными выше (универсальный способ), либо степенями окисления (если они могут быть определены по формуле) с помощью римских цифр в круглых скобках (знак плюс опускается). В ряде случаев приводят заряд ионов (для сложных по составу катионов и анионов), используя арабские цифры с соответствующим знаком.

Для распространенных многоэлементных катионов и анионов применяют следующие специальные названия:

H 2 F + - фтороний

C 2 2- - ацетиленид

H 3 O + - оксоний

CN - - цианид

H 3 S + - сульфоний

CNO - - фульминат

NH 4 + - аммоний

HF 2 - - гидродифторид

N 2 H 5 + - гидразиний(1+)

HO 2 - - гидропероксид

N 2 H 6 + - гидразиний(2+)

HS - - гидросульфид

NH 3 OH + - гидроксиламиний

N 3 - - азид

NO + - нитрозил

NCS - - тиоционат

NO 2 + - нитроил

O 2 2 - - пероксид

O 2 + - диоксигенил

O 2 - - надпероксид

PH 4 + - фосфоний

O 3 - - озонид

VO 2 + - ванадил

OCN - - цианат

UO 2 + - уранил

OH - - гидроксид

Для небольшого числа хорошо известных веществ также используют специальные названия:

AsH 3 - арсин

HN 3 - азидоводород

B 2 H 6 - боран

H 2 S - сероводород

B 4 H 10 - тетраборан(10)

NH 3 - аммиак

HCN - циановодород

N 2 H 4 - гидразин

HCl - хлороводород

NH 2 OH - гидроксиламин

HF - фтороводород

PH 3 - фосфин

HI - иодоводород

SiH 4 - силан

Гидроксиды - тип сложных веществ, в состав которых входят атомы некоторого элемента Е (кроме фтора и кислорода) и гидроксогруппы ОН; общая формула гидроксидов Е(ОН)

n , где n = 1÷6. Форма гидроксидов Е(ОН) n называется орто -формой; при n > 2 гидроксид может находиться также в мета -форме, включающей кроме атомов Е и групп ОН еще атомы кислорода О, например Е(ОН) 3 и ЕО(ОН), Е(ОН) 4 и Е(ОН) 6 и ЕО 2 (ОН) 2 .

Гидроксиды делят на две противоположные по химическим свойствам группы: кислотные и основные гидроксиды.

Кислотные гидроксиды содержат атомы водорода, которые могут замещаться на атомы металла при соблюдении правила стехиометрической валентности. Большинство кислотных гидроксидов находится в мета -форме, причем атомы водорода в формулах кислотных гидроксидов ставят на первое место, например

H 2 SO 4 , HNO 3 и H 2 CO 3 , а не SO 2 (OH) 2 , NO 2 (OH) и CO(OH) 2 . Общая формула кислотных гидроксидов - Н х ЕО у , где электроотрицательную составляющую ЕО у х- называют кислотным остатком. Если не все атомы водорода замещены на металл, то они остаются в составе кислотного остатка.

Названия распространенных кислотных гидроксидов состоят из двух слов: собственного названия с окончанием “ая” и группового слова “кислота”. Приведем формулы и собственные названия распространенных кислотных гидроксидов и их кислотных остатков (прочерк означает, что гидроксид не известен в свободном виде или в кислом водном растворе):

кислотный гидроксид

кислотный остаток

HAsO 2 - метамышьяковистая

AsO 2 - - метаарсенит

H 3 AsO 3 - ортомышьяковистая

AsO 3 3- - ортоарсенит

H 3 AsO 4 - мышьяковая

AsO 4 3- - арсенат

4 О 7 2- - тетраборат
iО 3 - - висмутат

HBrO - бромноватистая

BrO - - гипобромит

HBrO 3 - бромноватая

BrO 3 - - бромат

H 2 CO 3 - угольная

CO 3 2- - карбонат

HClO - хлорноватистая

ClO - - гипохлорит

HClO 2 - хлористая

ClO 2 - - хлорит

HClO 3 - хлорноватая

ClO 3 - - хлорат

HClO 4 - хлорная

ClO 4 - - перхлорат

H 2 CrO 4 - хромовая

CrO 4 2- - хромат

CrO 4 - - гидрохромат

H 2 Cr 2 О 7 - дихромовая

Cr 2 O 7 2- - дихромат

FeO 4 2- - феррат

HIO 3 - иодноватая

IO 3 - - иодат

HIO 4 - метаиодная

IO 4 - - метапериодат

H 5 IO 6 - ортоиодная

IO 6 5- - ортопериодат

HMnO 4 - марганцовая

MnO 4 - - перманганат

MnO 4 2- - манганат

Mо O 4 2- - молибдат

HNO 2 - азотистая

NO 2 - - нитрит

HNO 3 - азотная

NO 3 - - нитрат

HPO 3 - метафосфорная

PO 3 - - метафосфат

H 3 PO 4 - ортофосфорная

PO 4 3- - ортофосфат

PO 4 2- - гидроортофосфат
2 PO 4 - - дигидроотофосфат

H 4 P 2 O 7 - дифосфорная

P 2 O 7 4- - дифосфат

ReO 4 - - перренат

SO 3 2- - сульфит

HSO 3 - - гидросульфит

H 2 SO 4 - серная

SO 4 2- - сульфат

SO 4 - - гидросульфат

H 2 S 2 O 7 - дисерная

S 2 O 7 2- - дисульфат

H 2 S 2 O 6 (O 2) - пероксодисерная

S 2 O 6 (O 2) 2- - пероксодисульфат

H 2 SO 3 S - тиосерная

SO 3 S 2- - тиосульфат

H 2 SeO 3 - селенистая

SeO 3 2- - селенит

H 2 SeO 4 - селеновая

SeO 4 2- - селенат

H 2 SiO 3 - метакремниевая

SiO 3 2- - метасиликат

H 4 SiO 4 - ортокремниевая

SiO 4 4- - ортосиликат

H 2 TeO 3 - теллуристая

TeO 3 2- - теллурит

H 2 TeO 4 - метателлуровая

TeO 4 2- - метателлурат

H 6 TeO 6 - ортотеллуровая

TeO 6 6- - ортотеллурат

VO 3 - - метаванадат

VO 4 3- - ортованадат

WO 4 3- - вольфрамат

Менее распространенные кислотные гидроксиды называют по номенклатурным правилам для комплексных соединений, например:

Названия кислотных остатков используют при построении названий солей.

Основные гидроксиды содержат гидроксид-ионы, которые могут замещаться на кислотные остатки при соблюдении правила стехиометрической валентности. Все основные гидроксиды находятся в орто -форме; их общая формула М(ОН)

n , где n = 1,2 (реже 3,4) и М n +- катион металла. Примеры формул и названий основных гидроксидов:

Важнейшим химическим свойством основных и кислотных гидроксидов является их взаимодействие их между собой с образованием солей (реакция солеобразования ), например:

Ca(OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O

Ca(OH) 2 + 2H 2 SO 4 = Ca(HSO 4) 2 + 2H 2 O

2Ca(OH) 2 + H 2 SO 4 = Ca 2 SO 4 (OH) 2 + 2H 2 O

Соли - тип сложных веществ, в состав которых входят катионы М

n + и кислотные остатки*.

Соли с общей формулой М х (ЕО у

) n называют средними солями, а соли с незамещенными атомами водорода, - кислыми солями. Иногда соли содержат в своем составе также гидроксид - или(и) оксид - ионы; такие соли называют основными солями. Приведем примеры и названия солей:

- ортофосфат кальция

- дигидроортофосфат кальция

- гидроортофосфат кальция

Карбонат меди(II)

Cu 2 CO 3 (OH) 2

- дигидроксид-карбонат димеди

Нитрат лантана(III)

- оксид-динитрат титана

Кислые и основные соли могут быть превращены в средние соли взаимодействием с соответствующим основным и кислотным гидроксидом, например:

Ca(HSO 4) 2 + Ca(OH) = CaSO 4 + 2H 2 O

Ca 2 SO 4 (OH) 2 + H 2 SO 4 = 2CaSO 4 + 2H 2 O

Встречаются также соли, содерхащие два разных катиона: их часто называют двойными солями , например:

Оксиды Е х О у

- продукты полной дегидратации гидроксидов:

Кислотным гидроксидам

(H 2 SO 4 , H 2 CO 3) отвечают кислотные оксиды (SO 3 , CO 2), а основным гидроксидам (NaOH, Ca(OH) 2) - основные оксиды (Na 2 O, CaO), причем степень окисления элемента Е не изменяется при переходе от гидроксида к оксиду. Пример формул и названий оксидов:

Кислотные и основные оксиды сохраняют солеобразующие свойства соответствующих гидроксидов при взаимодействии с противоположными по свойствам гидроксидами или между собой:

N 2 O 5 + 2NaOH = 2NaNO 3 + H 2 O

3CaO + 2H 3 PO 4 = Ca 3 (PO 4) 2 + 3H 2 O

La 2 O 3 + 3SO 3 = La 2 (SO 4) 3

Амфотерность

гидроксидов и оксидов - химическое свойство, заключающееся в образовании ими двух рядов солей, например, для гидроксида и оксида алюминия:

(а ) 2Al(OH) 3 + 3SO 3 = Al 2 (SO 4) 3 + 3H 2 O

Al 2 O 3 + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 O

(б ) 2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O

Так, гидроксид и оксид алюминия в реакциях (а) проявляют свойства основных гидроксидов и оксидов, т.е. реагируют с кислотными гидроксидам и оксидом, образуя соответствующую соль - сульфат алюминия

Al 2 (SO 4) 3 , тогда как в реакциях (б) они же проявляют свойства кислотных гидроксидов и оксидов, т.е. реагируют с основными гидроксидом и оксидом, образуя соль - диоксоалюминат (III) натрия NaAlO 2 . В первом случае элемент алюминий проявляет свойство металла и входит в состав электроположительной составляющей (Al 3+ ), во втором - свойство неметалла и входит в состав электроотрицательной составляющей формулы соли (AlO 2 - ).

Если указанные реакции протекают в водном растворе, то состав образующихся солей меняется, но присутствие алюминия в катионе и анионе остаётся:

2Al(OH) 3 + 3H 2 SO 4 = 2 (SO 4) 3

Al(OH) 3 + NaOH = Na

Здесь квадратными скобками выделены комплексные ионы

3+ - катион гексаакваалюминия(III) , - - тетрагидроксоалюминат(III)-ион.

Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы -

Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

Амфотерные гидроксиды (если степень окисления элемента превышает +

II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(

II) доминируют основные свойства, а сам марганец входит в состав катионов типа [ Mn(H 2 O) 6 ] 2+ , тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO 4 - . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например Н Mn VII O 4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (

Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами.

Обширный тип неорганических сложных веществ - бинарные соединения. К ним относятся, в первую очередь все двухэлементные соединения (кроме основных, кислотных и амфотерных оксидов), например

H 2 O, KBr, H 2 S, Cs 2 (S 2), N 2 O, NH 3 , HN 3 , CaC 2 , SiH 4 . Электроположительная и электроотрицательная составляющие формул этих соединений включают отдельные атомы или связанные группы атомов одного элемента.

Многоэлементные вещества, в формулах которых одна из составляющих содержит не связанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения, например

CSO, IO 2 F 3 , SBrO 2 F, CrO(O 2) 2 , PSI 3 , (CaTi)O 3 , (FeCu)S 2 , Hg(CN) 2 , (PF 3) 2 O, VCl 2 (NH 2 ). Так, CSO можно представить как соединение CS 2 , в котором один атом серы заменен на атом кислорода.

Названия бинарных соединений строятся по обычным номенклатурным правилам, например:

OF 2 - дифторид кислорода

K 2 O 2 - пероксид калия

HgCl 2 - хлорид ртути(II)

Na 2 S - сульфид натрия

Hg 2 Cl 2 - дихлорид диртути

Mg 3 N 2 - нитрид магния

SBr 2 O - оксид-дибромид серы

NH 4 Br - бромид аммония

N 2 O - оксид диазота

Pb(N 3) 2 - азид свинца(II)

NO 2 - диоксид азота

CaC 2 - ацетиленид кальция

Для некоторых бинарных соединений используют специальные названия, список которых был приведен ранее.

Химические свойства бинарных соединений довольно разнообразны, поэтому их часто разделяют на группы по названию анионов, т.е. отдельно рассматривают галогениды, халькогениды, нитриды, карбиды, гидриды и т. д. Среди бинарных соединений встречаются и такие, которые имеют некоторые признаки других типов неорганических веществ. Так, соединения

CO, NO, NO 2 , и (Fe II Fe 2 III)O 4 , названия которых строятся с применением слова оксид, к типу оксидов (кислотных, основных, амфотерных) отнесены быть не могут. Монооксид углерода СО, монооксид азота NO и диоксид азота NO 2 не имеют соответствующих кислотных гидроксидов (хотя эти оксиды образованы неметаллами С и N), не образуют они и солей, в состав анионов которых входили бы атомы С II , N II и N IV . Двойной оксид (Fe II Fe 2 III)O 4 - оксид дижелеза(III)-железа(II) хотя и содержит в составе электроположительной составляющей атомы амфотерного элемента - железа, но в двух разных степенях окисления, вследствие чего при взаимодействии с кислотными гидроксидами образует не одну, а две разные соли.

Такие бинарные соединения, как

AgF, KBr, Na 2 S, Ba(HS) 2 , NaCN, NH 4 Cl, и Pb(N 3) 2 , построены, подобно солям, из реальных катионов и анионов, поэтому их называют солеобразными бинарными соединениями (или просто солями). Их можно рассматривать как продукты замещения атомов водорода в соединениях Н F, Н Cl, Н Br, Н 2 S, Н CN и Н N 3 . Последние в водном растворе обладают кислотной функцией, и поэтому их растворы называют кислотами, например Н F(aqua) - фтороводородная кислота, Н 2 S(aqua) - сероводородная кислота. Однако они не принадлежат к типу кислотных гидроксидов, а их производные - к солям в рамках классификации неорганических веществ.

В химии все многообразие неорганических веществ: принято разделять на две группы – простые и сложные. Простые вещества подразделяются на металлы и неметаллы. А сложные – на производные от простых, образованные путем их взаимодействия с кислородом, водой и между собой. Эту классификацию неорганических веществ в виде схемы изображают следующим образом:

Рис. 2.1. Классификация неорганических соединений.

Классификация реакций в неорганической химии. В неорганической химии различают реакции: 1)соединения, 2)разложения (и те и другие могут быть окислительно-восстановительными реакциями, а могут и не быть таковыми), 3)обмена, 4)замещения, которые всегда являются окислительно-восстановительными. Схемы реакций и примеры даны в таблице 2.1.

Таблица 2.1

Классификация реакций

Рассмотрим получение и свойства наиболее важных классов неорганических соединений.

ОКСИДЫ (окислы) - сложные вещества, состоящие из двух элементов, одним из которых является кислород в степени окисления, равной -2. Общая формула любого оксида - Э х О у -2 . Различают солеобразующие (основные : Li 2 O, CaO, MgO ,FeO; амфотерные : ZnO, Al 2 O 3 , SnO 2 , Cr 2 O 3 , Fe 2 O 3 ; кислотные : B 2 O 3 , SO 3 , CO 2 , P 2 O 5 Mn 2 O 7) и несолеобразующие : N 2 O, NO, CO оксиды. Элементы с переменной степенью окисления образуют несколько оксидов (MnO, MnO 2 , Mn 2 O 7 , NO, N 2 O 3 , NO 2 , N 2 O 5). В высшем оксиде, как правило, элемент находится в степени окисления, равной номеру группы.

По современной международной номенклатуре названия оксидов составляют следующим образом: слово «оксид», далее русское название элемента в родительном падеже, степень окисления элемента (если она переменна). Например: FeO – оксид железа (II), P 2 O 5 – оксид фосфора (V).

Основные оксиды это те, которым соответствуют гидроксиды – основания. Основными называют оксиды, взаимодействующие с кислотами с образованием соли и воды. Основные оксиды образуются только металлами в степени окисления +1,+2 (иногда +3), например: BaO, SrO, FeO, MnO, CrO, Li 2 O, Bi 2 O 3 , Ag 2 O.

Получение основных оксидов :

1) Окисление металлов при нагревании в атмосфере кислорода:

Этот метод практически неприменим для щелочных металлов, которые при окислении обычно дают пероксиды, поэтому оксиды Na 2 O, K 2 O крайне труднодоступны.

2) Обжиг сульфидов:

2СuS+3O 2 =2CuO+2SO 2 ;

4FeS 2 +11O 2 =2Fe 2 O 3 +8SO 2 .

3) Разложение гидроксидов:

Cu(OH) 2 =CuO+H 2 O.

Этим методом нельзя получить оксиды щелочных металлов.

4) Разложение солей некоторых кислородсодержащих кислот:

BaCO 3 =BaO+CO 2 ,

2Pb(NO 3) 2 =2PbO+4NO 2 +O 2

Свойства основных оксидов . Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера; в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с ионами O 2- , поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

Отметим одну характерную для оксидов особенность. Близость ионных радиусов многих ионов металлов приводит к тому, что в кристаллической решетке оксидов часть ионов одного металла может быть заменена на ионы другого металла. Это приводит к тому, что для оксидов часто не выполняется закон постоянства состава, и могут существовать смешанные оксиды переменного состава.

1) Отношение к воде.

Процесс присоединения воды называется гидратацией, а образующееся вещество – гидроксидом. Из основных оксидов с водой взаимодействуют только оксиды щелочных (Li, Na, K, Rb, Cs, Fr) и щелочноземельных металлов (Ca, Sr, Ba, Ra).

Li 2 O+H 2 O=2LiOH;

BaO+H 2 O=Ba(OH) 2 .

Большинство же основных оксидов в воде не растворяются и не взаимодействуют с ней. Соответствующие их гидроксиды получают косвенным путем – действием щелочей на соли (см. ниже).

2) Отношение к кислотам.

CaO+H 2 SO 4 =CaSO 4 +H 2 O;

FeO+2HCl=FeCl 2 +H 2 O.

3) Отношение к кислотным и амфотерным оксидам.

Основные оксиды щелочных и щелочноземельных металлов при сплавлении взаимодействуют с твердыми кислотными и амфотерными оксидами, а также с газообразными кислотными оксидами при обычных условиях.

CaO+CO 2 =CaCO 3;

3BaO+P 2 O 5 =Ba 3 (PO 4) 2 ;

сплавление

Li 2 O+Al 2 O 3 =2LiAlO 2 .

сплавление

Основные оксиды менее активных металлов взаимодействуют только с твердыми кислотными оксидами при сплавлении.

Кислотные оксиды - оксиды, которые при взаимодействии с основаниями образуют соль и воду. Кислотным оксидам соответствуют гидроксиды – кислоты. Кислотные оксиды – это оксиды неметаллов в различных степенях окисления, либо оксиды металлов в высокой степени окисления (+4 и выше). Примеры: SO 2 , SO 3 , Cl 2 O 7 , Mn 2 O 7 , CrO 3 .

Химическая связь в кислотных оксидах – ковалентная полярная. При обычных условиях кислотные оксиды неметаллов могут быть газообразными (CO 2 , SO 2), жидкими (N 2 O 3 , Cl 2 O 7), твердыми (P 2 O 5 , SiO 2).

Получение кислотных оксидов .

1) Окисление неметаллов:

2) Окисление сульфидов:

2ZnS+3O 2 =2ZnO+2SO 2 

3) Вытеснение непрочных слабых кислот из их солей:

CaCO 3 +2HCl=CaCl 2 +CO 2 +H 2 O.

Свойства кислотных оксидов .

1) Отношение к воде.

Большинство кислотных оксидов растворяются в воде, вступая с ней в химическое взаимодействие и образуя кислоты:

SO 3 +H 2 O=H 2 SO 4 ,

CO 2 +H 2 O=H 2 CO 3 .

2) Отношение к основаниям.

Кислотные оксиды взаимодействуют с растворимыми основаниями – щелочами, образуя соль и воду.

SO 2 +2NaOH=Na 2 SO 3 +H 2 O;

P 2 O 5 +6NaOH=2Na 3 PO 4 +3H 2 O

сплавление

3) Отношение к основным и амфотерным оксидам.

Твердые кислотные оксиды взаимодействуют с основными и амфотерными оксидами при сплавлении. Жидкие и газообразные оксиды взаимодействуют с оксидами щелочных и щелочноземельных металлов при обычных условиях.

P 2 O 5 +3CuO=Cu 3 (PO 4) 2 ;

сплавление

3SiO 2 +Al 2 O 3 =Al 2 (SiO 3) 3

сплавление

Амфотерные оксиды взаимодействуют и с кислотами и со щелочами, проявляя свойства кислотных и основных оксидов. Им соответствуют амфотерные гидроксиды. Все они твердые вещества, нерастворимые в воде. Примеры амфотерных оксидов: ZnO, BeO, SnO, PbO, Al 2 O 3 , Cr 2 O 3 , Sb 2 O 3 , MnO 2 .

Свойства амфотерных оксидов .

Амфотерные оксиды реагируют с кислотами как основные:

Al 2 O 3 +6HCl=2AlCl 3 +3H 2 O,

а со щелочами – как кислотные. Состав продуктов реакции зависит от условий. При сплавлении:

ZnO+2NaOH=Na 2 ZnO 2 +H 2 O;

Цинкат натрия

В растворе щелочи образуется растворимая комплексная соль, содержащая гидроксокомплексный ион:

ZnO+2NaOH+H 2 O=Na 2

Тетрагидроксоцинкат натрия

Несолеобразующие оксиды – это оксиды неметаллов, которым не соответствуют гидроксиды и соли. Примеры: CO, N 2 O, NO, SiO.

Оксиды широко распространены в природе. Так вода – самый распространенный оксид покрывает 71% поверхности планеты. Оксид кремния (IV) в виде 400 разновидностей кварца составляет 12% от массы земной коры. Оксид углерода (IV) (углекислый газ) содержится в атмосфере - 0,03% по объему, а также в природных водах. Важнейшие руды: гематит, магнетит, бурый железняк состоят из различных оксидов железа. Бокситы содержат оксид алюминия, и т.д.

ОСНОВАНИЯ – сложные вещества, в которых на атом металла приходится одна или несколько гидроксогрупп ОН - . Степень окисления атомов металла обычно +1, +2 (реже +3). Общая формула оснований Ме(ОН) х, где х – число гидроксогрупп – кислотность основания. (МеОН – однокислотное, Ме(ОН) 2 – двухкислотное, Ме(ОН) 3 – трехкислотное основание).

Названия основаниям дают следующим образом: «гидроксид», затем русское название металла в родительном падеже, а в скобках римскими цифрами – степень окисления, если она переменная. Например: KOH –гидроксид калия, Ni(OH) 2 – гидроксид никеля(II).

При обычных условиях основания – твердые вещества, кроме гидроксида аммония – водного раствора аммиака NH 4 OH (NH 4 + - ион аммония, входящий в состав солей аммония).

Классификация оснований. В зависимости от отношения к воде основания делятся на растворимые (щелочи) и нерастворимые. К растворимым основаниям - щелочам относятся только гидроксиды щелочных и щелочноземельных металлов (LiOH, NaOH, KOH, CsOH, RbOH, FrOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , Ra(OH) 2) а также водный раствор аммиака. Все остальные основания практически нерастворимы в воде.

С точки зрения теории электролитической диссоциации основания – электролиты, диссоциирующие в водном растворе с образованием в качестве анионов только гидроксид-ионов:

Ме(ОН) х  Ме х+ + хОН - .

Наличие в растворе ионов гидроксида определяют с помощью индикаторов: лакмуса (синий), фенолфталеина (малиновый), метилоранжа (желтый). Нерастворимые основания не меняют окраски индикаторов.

Простые вещества и химические соединения. Оксиды: основные, кислотные и амфотерные. Номенклатура окси­дов. Зависимость кислотно-основного характера оксидов от положения в периодической системе и степени окис­ления элемента. Химическое взаимодействие между оксидами с образованием солей. Гидроксиды основные и амфотерные, кислоты. Их номенклатура и получение. Соли: нормальные, кислые и основные. Номенклатура солей. Получение и свойства солей.

Номенклатура и свойства комплексных соединений.

Неорганические соединения различают по составу (бинарные и многоэлементные) и функциональным признакам. К бинарным соединениям относят соединения элементов с кислородом (оксиды ), галогенами (галогениды – фториды, хлориды, бромиды, иодиды), халькогенами (халькогениды – сульфиды, селениды, теллуриды), азотом (нитриды), фосфором (фосфиды), углеродом (карбиды), кремнием (силициды ), а также соединения металлов друг с другом (интерметаллиды ) и водородом (гидриды ). Среди многоэлементных соединений выделяют гидроксиды (вещества, содержащие гидроксидные группы - ОН), производные гидроксидов – соли , а также комплексные соединения , гидраты и кристаллогидраты.

В соответствии с правилами ИЮПАК наименование любого вещества должно однозначно указывать на его состав. Поэтому в основу систематических.е. нование любого вещества должно однозначно указывать на его состав, поэтому в основу системаи соединений, нные соотношения названий неорганических веществ положены названия элементов, входящих в их состав.

Название бинарного соединения образуется из латинского корня наименования более электроотрицательного элемента с окончанием –ид и русского наименования менее электроотрицательного элемента в родительном падеже. При написании формулы вещества менее электроотрицательный элемент стоит левее. Например, Al 2 O 3 – оксид алюминия, AgI – иодид серебра, OF 2 – фторид кислорода. Для некоторых элементов корни их русских названий совпадают с корнями латинских, за исключением элементов, представленных ниже в таблице 1:

Таблица 1

Названия химических элементов

Символьная запись Русское название Латинское название
Ag Серебро Аргент-
As Мышьяк Арс-, арсен-
Au Золото Аур-
C Углерод Карб-, карбон-
Cu Медь Купр-
Fe Железо Ферр-
H Водород Гидр-, гидроген-
N Азот Нитр-
Ni Никель Никкол-
O Кислород Окс-, оксиген-
Pb Свинец Плюмб-
S Сера Сульф-, тио-
Sb Сурьма Стиб-
Si Кремний Сил-, силиц-, силик-
Hg Ртуть Меркур-
Mn Марганец Манган-
Sn Олово Станн-

Для обозначения количественного состава используют греческие числительные в качестве приставки, например, Hg 2 Cl 2 – дихлорид диртути, СО – монооксид углерода, СО 2 - диоксид углерода.

Числительные приставки имеют следующие названия:

1 - Моно- 5 - Пента- 9 - Нона-

2 - Ди- 6 - Гекса- 10 - Дека-

3 - Три- 7- Гепта- 11 - Ундека-

4 - Тетра- 8 - Окта- 12- Додека- .

Название многоэлементного соединения отражает его функциональные признаки, такие как принадлежность к гидроксидам или кислотам. Гидрооксиды – это соединения оксидов с водой. Их подразделяют на основные, проявляющие в химических реакциях свойства оснований, кислотные – проявляющие свойства кислот, амфотерные – способные проявлять как кислотные, так и основные свойства.

К классу оснований , согласно теории электролитической диссоциации, относят вещества, способные в водном растворе диссоциировать с образованием гидроксид-ионов ОН - : Наименование основного гидроксида (или основания) образовано из слова «гидроксид» и названия элемента в родительном падеже, после которого при необходимости указывают степень окисления элемента. Например, NaOH – гидроксид натрия, Fe(OH) 2 – гидроксид железа (II) или дигидроксид железа. Общую формулу основания можно записать как М(ОН) m , где М – металл, m- число гидроксильных групп, или кислотность основания .

Вещества, способные диссоциировать в растворе с образованием ионов водорода Н + , в соответствии с теорией электролитической диссоциацией относят к классу кислот .

Кислоты в зависимости от наличия в их составе кислорода подразделяются на кислородсодержащие и на безкислородные . В общем случае формулу кислоты можно записать как Н n А, где А – кислотный остаток, n – число атомов водорода в молекуле, или основность кислоты .

Систематическое название кислоты включает в себя наименование двух частей: электроположительной (атомы водорода) и электроотрицательной (кислотный остаток, анион). В названии аниона вначале указывают атомы кислорода (-оксо-), затем кислотообразующего элемента с добавлением суффикса -ат, далее в скобках абсолютную величину степени окисления этого элемента. Например, H 2 CO 3 – триоксокарбонат (IY) водорода, Н 2 SO 4 – тетраоксосульфат (VI) водорода. При наличии в анионе других атомов название аниона составляют из латинских корней названий соответствующих элементов и соединительной гласной -о- в порядке их размещения в формуле справа налево. Например, H 2 SO 3 (O 2) – пероксотриоксосульфат (VI) водорода, Н 2 SO 3 S – тиотриоксосульфат (VI) водорода. Систематические наименования наиболее употребительных кислот представлены в таблице 3.

Традиционное название состоит из двух слов – прилагательного, производного от корня названия кислотообразующего элемента, и слова «кислота», например, Н 2 SO 4 – серная кислота, НNO 3 – азотная кислота.

Амфотерные гидрооксиды способны диссоциировать в водных растворах как по типу оснований, так и по типу кислот, например,

При взаимодействии с кислотами они проявляют свойства оснований, а при взаимодействии с основаниями – свойства кислот. Их названия составляют по схеме, соответствующей основным гидроксидам.

Таблица 2

Названия важнейших кислот и их солей

Формула кислоты Названия
Кислоты Соли
HAlO 2 Метаалюминиевая Метаалюминат
HAsO 3 Метамышьяковая Метаарсенат
H 3 AsO 4 Ортомышьяковая Ортоарсенат
HAsO 2 Метамышьяковистая Метаарсенит
H 3 AsO 3 Ортмышьяковистая Ортоарсенит
HBO 2 Метаборная Метаборат
H 3 BO 3 Ортоборная Ортоборат
H 2 B 4 O 7 Четырёхборная Тетраборат
HBr Бромводород Бромид
HOBr Бромноватистая Гипобромит
HBrO 3 Бромноватая Бромат
HCOOH Муравьиная Формиат
CH 3 COOH Уксусная Ацетат
HCN Циановодород Цианид
H 2 CO 3 Угольная Карбонат
H 2 C 2 O 4 Щавелевая Оксалат
HCl Хлороводород Хлорид
HOCl Хлорноватистая Гипохлорит
HClO 2 Хлористая Хлорит
HClO 3 Хлорноватая Хлорат
HClO 4 Хлорная Перхлорат
HCrO 2 Метахромистая Метахромит
H 2 CrO 4 Хромовая Хромат
H 2 Cr 2 O 7 Двухромовая Дихромат
HI Йодоводород Йодид
HOI Йодноватистая Гипойодит
HIO 3 Йодноватая Йодат
HIO 4 Йодная Перйодат
HMnO 4 Марганцовая Перманганат
H 2 MnO 4 Марганцовистая Манганат
H 2 MoO 4 Молибденовая Молибдат
HN 3 Азидоводород (азотистоводородная) Азид
HNO 2 Азотистая Нитрит
HNO 3 Азотная Нитрат
HPO 3 Метафосфорная Метафосфат
H 3 PO 4 Ортофосфорная Ортофосфат
H 4 P 2 O 7 Двуфосфорная (пирофосфорная) Дифосфат (пирофосфат)
H 3 PO 3 Фосфористая Фосфит
H 3 PO 2 Фоснофорноватистая Гипофосфит
H 2 S Сероводород Сульфид
HSCN Родановодород Роданид
H 2 SO 3 Сернистая Сульфит
H 2 SO 4 Серная Сульфат
H 2 S 2 O 3 Тиосерная Тиосульфат
H 2 S 2 O 7 Двусерная (пиросерная) Дисульфат (пиросульфат)
H 2 S 2 O 8 Пероксодвусерная (надсерная) Пероксидосульфат (персульфат)
H 2 Se Селеноводород Селенид
H 2 SeO 3 Селенистая Селенит
H 2 SeO 4 Селеновая Селенат
H 2 SiO 3 Кремниевая Силикат
HVO 3 Ванадиевая Ванадат
H 2 WO 4 Вольфрамовая Вольфрамат

Соли представляют собой продукты замещения ионов водорода кислоты на металл или гидроксильных групп основания на кислотный остаток. В зависимости от полноты замещения атомов водорода или гидроксильных групп соли подразделяют на средние (или нормальные ), например К 2 SO 4 , кислые (или гидросоли ) например NaHCO 3 , и основные (или гидроксосоли ) например FeOHCl. Различают также двойные соли , образованные двумя металлами и одним кислотным остатком (КАl(SO 4) 2), и смешанные соли, образованные одним металлом и двумя кислотными остатками (СаСlОСl). Названия солей обусловлены систематическими названиями соответствующих кислот, например, К 2 SO 4 – тетраоксосульфат (VI) калия, NaHCO 3 – триоксокарбонат (IY) водорода-натрия, FeOHCl или, точнее, FeClOH – гидрокси-хлорид железа (II).

При наличии числовых приставок (1, 2, . . .) в названии вещества для верного понимания формулы применяют умножение приставки (например, КАl 3 (SO 4) 2 (OH) 6 – гексагидроксид-бис(сульфат) триалюминия-калия). Названия приставок следующие:

1 Монокис- 5 Пентакис- 9 Нонакис-

3 Трис- 7 Гептакис- 11 Ундекасис-

Традиционные наименования солей также содержат названия анионов в именительном падеже и названия катионов в родительном падеже (см. табл. 2), например, К 2 SO 4 – сульфат калия, NaHCO 3 – гидрокарбонат натрия, FeOHCl – гидроксохлорид железа (II).

Оксиды в зависимости от характерных функций, выполняемых в химических реакциях, подразделяют на солеобразующие (среди них выделяют основные, кислотные и амфотерные) и несолеобразующие .

Основные оксиды образуют соли при взаимодействии с кислотами или кислотными оксидами. Им соответствуют основания, так как они их образуют при взаимодействии с водой, например СаО – Са(ОН) 2 .

Кислотные оксиды образуют соли при взаимодействии с основаниями или основными оксидами. Они могут быть получены путем отделения воды от соответствующей кислоты. Поэтому их называют также ангидридами кислот, например SO 3 – ангидрид Н 2 SO 4 .

Амфотерные оксиды образуют соли как при взаимодействии с кислотами, так и при взаимодействии с основаниями, например, ZnO, Al 2 O 3 .

Гидраты и кристаллогидраты – соединения, содержащие в своем составе воду, например, NH 3 ∙ Н 2 О ∙ Fe 2 O 3 , n H 2 O, СuSO 4 ∙ 5Н 2 О. Как систематические, так и традиционные названия таких соединений начинаются со слова «гидрат» с соответствующей приставкой: NH 3 ∙ Н 2 О – гидрат аммиака, Fe 2 O 3 ∙ n H 2 O – полигидрат оксида железа (III), СuSO 4 ∙ 5Н 2 О – пентагидрад тетраоксосульфата меди (II), или пентагидрад сульфата меди (II).

Лекция 5. Химическая термодинамика

Химическая термодинамика. Термодинамические системы. Термодинамические параметры. Термодинамический процесс. Внутренняя энергия, теплота, работа. Первый закон термодинамики. Энтальпия. Закон Гесса и следствия из него. Энтропия. Второе начало термодинамики. Свободная энергия Гиббса и свободная энергия Гельгмольца.

Химическая термодинамика.

Термодинамика изучает взаимное превращение теплоты, работы и различных видов энергии. Слово термодинамика происходит от греческих слов термос (тепло) и динамос (сила, мощь). Термин термодинамика был введён Томсоном в 1854 году, который употребил его как синоним понятий теплота и работа.

Термодинамика основывается на трёх фундаментальных принципах, которые называются началами термодинамики. Они являются обобщением многочисленных экспериментальных фактов.

Применение методов термодинамики к химическим реакциям и процессам обусловили появление химической термодинамики. Предметом изучения химической термодинамики является превращение энергии при химических взаимодействиях, которые происходят при протекании химических процессов.

Термодинамические системы. Термодинамические параметры. Термодинамический процесс.

Термодинамика использует ряд понятий и модельных представлений, таких как термодинамическая система, параметры состояния, энергия, теплота, работа. Перейдем к их рассмотрению.

Понятие система означает ту часть материального мира, которую мы исследуем. Например, химический стакан с водой, реактор на химическом предприятии. Остальная часть материального мира, за пределами условно выделенной системы – называется окружением.

Термодинамической системой – называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. Система отделена от окружения границей, через которую совершается материальный обмен - массообмен или (и) теплообмен. В зависимости от степени изолированности различают открытые, закрытые, изолированные системы.

Открытые системы – это системы, которые обмениваются с внешней средой веществом, механической работой, теплотой и излучением. Например, в пробирке смешивается карбонат натрия (сода) с раствором хлорводородной кислоты. В результате протекает реакция

Na 2 CO 3 + HCl = NaCl + CO 2 + H 2 O.

В рассматриваемом химическом процессе масса системы уменьшается, так как улетучивается диоксид углерода, и выделяется тепло, часть которого идёт на нагрев окружающего воздуха.

Закрытые системы – системы, которые не обмениваются с внешней средой веществом, но взаимодействуют с ней посредством механической работы, теплообмена и излучения. Примером закрытой системы является пробирка, в которой происходит смешение соды с хлорводородной кислотой, закрытая пробкой.

Изолированные системы – системы невзаимодействующие с внешней средой. Между изолированной системой и окружением не происходит никакого обмена ни веществом, ни энергией. На практике понятие абсолютно изолированных систем не существует, оно является абстрактным, мысленным построением. Примером приближенно изолированной системы является термос или сосуд Дьюара.

Система может находиться в том или ином состоянии. Состоянием системы называется совокупность физических и химических свойств, характеризующих систему.

Состояние термодинамической системы характеризуют параметры состояния : давление, объём, температура, концентрация.

Давление (Р) характеризует подвижность молекул и определяется силой, с которой газообразные частицы действуют на стенки сосуда. Давление измеряют в Па (Паскаль), атм (атмосфера), мм рт. ст. (миллиметры ртутного столба): 1 атм = 760 мм рт. ст. = 101325 Па.

Объём (V) характеризует часть пространства, занимаемого веществом. Измеряют объём в м 3 (кубический метр), см 3 (кубический сантиметр), л (литр), мл (миллилитр): 1 м 3 = 1000 л; 1л = 1000 мл.

Температура (Т, t) характеризует степень нагретости системы и измеряется в К (шкала Кельвина) и 0 С (шкала Цельсия). Для перевода температур, выраженных в разных шкалах, используют выражение

Т = t + 273 (1).

Концентрация вещества (с) определяет количественный состав раствора, смеси, расплава. Например, молярная концентрация – количество молей вещества в 1 л раствора или смеси, обозначается через моль/л.

Таким образом, набор параметров (р, V, Т) называется состоянием системы, так как считается, что он полностью определяет состояние. Термодинамические параметры являются макроскопическими величинами, измеряемыми в опыте. Они являются функциями состояния, то есть их изменение определяется только начальным и конечным состояниями и не зависит от пути процесса, в результате которого произошло это изменение

∆ Т = Т кон – Т нач = Т 2 – Т 1 (2).

Для бесконечно малых изменений можно записать

∆ Т = dT (3).

Если величина не является функцией состояния, а зависит от пути процесса, то она является функцией перехода. В этом случае бесконечно малое изменение величины А записывают в виде

∆А = δА (4).

Таким образом, знак ∆ - обозначает изменение величины, являющейся функцией состояния, знак δ – обозначает изменение величины, являющейся функцией перехода.

Термодинамические параметры не являются независимыми, а связаны уравнением состояния. Примером такого уравнения является уравнение состояния идеального газа, которое называется уравнением Менделеева-Клайперона

где n – число молей газа; R – газовая постоянная.

Состояние термодинамической системы может изменяться с течением времени. Обычно такое изменение фиксируется при измерении одного из термодинамических параметров. Поэтому в термодинамике используется понятие термодинамического процесса.

Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного параметра. Таким образом, термодинамический процесс – это изменение состояния системы. Различают следующие процессы: изохорный (V = const), изобарный (p = const), изотермический (T = const), адиабатный (теплота Q = 0).

Термодинамические процессы бывают:

-обратимые , когда переход из одного состояния в другое и обратно может происходить по одному и тому же пути, и после возвращения в исходное состояние в окружающей среде не остаётся макроскопических изменений; примером обратимого процесса является сжатие и растяжение пружины;

-необратимые или неравновесные , когда параметры изменяются с конечной скоростью и переход из одного состояния в другое и обратно не может происходить по одному и тому же пути, в результате в окружающей среде остаются макроскопические изменения; примером необратимого процесса является пластическая деформация металлической проволоки.

Внутренняя энергия, теплота, работа.

Кроме термодинамических параметров немаловажную роль играют и другие термодинамические величины, такие как работа и теплота. Они являются количественной мерой термодинамических процессов и характеризуют участие системы в термодинамических процессах. Работа и теплота являются энергетическими характеристиками. Поэтому рассмотрим понятие энергии.

Энергия происходит от греческого слова «действие» - есть мера способности совершать работу. Энергия измеряется в Дж (Джоуль). Многочисленные наблюдения и опытные факты говорят о следующих свойствах энергии.

Энергия не исчезает и не возникает из ничего.

Энергия может существовать в разнообразных формах.

В изолированной системе энергия может переходить из одной формы в другую, но её количество остаётся постоянным.

Если система не изолирована, то её энергия может изменяться, но при одновременном изменении энергии внешней среды на точно такую же величину.

Любая система обладает определённым запасом энергии, то есть энергия неотъемлемое свойство системы.

Для рассмотрения химических процессов важны следующие формы энергии: солнечная, механическая, химическая, ядерная, электрическая.

Различают следующие виды энергии: кинетическую (энергия движения), потенциальную (энергия положения и взаимодействия) и внутреннюю энергию (энергию состояния).

Классификация неорганических веществ основана на их способности к разложению. Простые вещества, состоящие из атомов только одного химического элемента (O 2 , H 2 , Mg), не распадаются. Легко разлагаются сложные вещества, состоящие из атомов двух и более элементов (CO 2 , H 2 SO 4 , NaOH, KCl).

Простые

Классификация классов неорганических веществ включает:

  • металлы - элементы, обладающие тепло- и электропроводностью, высокой пластичностью, ковкостью, металлическим блеском;
  • неметаллы - более хрупкие, чем металлы, элементы, не обладающие электропроводностью и проявляющие окислительные свойства.

Рис. 1. Схема классификации неорганических веществ.

Металлы расположены в нижнем левом углу периодической таблицы, неметаллы - в правом верхнем углу и включают благородные газы.

Рис. 2. Расположение металлов и неметаллов в таблице Менделеева.

Многие простые химические элементы обладают аллотропией - свойством образовывать несколько простых веществ. Например, при присоединении ещё одного атома к кислороду образуется простое вещество озон (О 3), углерод в зависимости от количества атомов образует графит, уголь или алмаз.

Сложные

Сложные вещества классифицируют на следующие классы:

  • оксиды - состоят из двух элементов, один из которых является кислородом;
  • кислоты - состоят из атомов водорода и кислотного остатка;
  • основания - состоят из металла и одной или нескольких гидроксильных групп;
  • соли - состоят из металла и кислотного остатка.

Отдельно выделяют амфотерные гидроксиды, которые проявляют свойства кислот и оснований. Это твёрдые вещества, являющиеся слабыми электролитами. К ним относятся гидроксиды металлов со степенью окисления +3 и +4. Исключениями являются Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 .

Более подробная классификация сложных веществ представлена в таблице с примерами.

Вид

Номенклатура

Химические свойства

Пример

Оксиды - Е х О у

Оксид элемента (степень окисления)

Выделяют основные оксиды, которые при взаимодействии с кислотами образуют соли, и кислотные оксиды, образующие при взаимодействии с основаниями кислоты. Отдельно выделяют амфотерные оксиды, взаимодействующие с кислотами и основаниями (образуется соль)

Na 2 O - оксид натрия, Fe 2 O 3 - оксид железа (III), N 2 O 5 - оксид азота (V)

Основания - Ме(ОН) х

Гидроксид металла (степень окисления)

В соответствии с растворимостью выделяют щёлочи и нерастворимые в воде основания. Щёлочи взаимодействуют с неметаллами и кислотными оксидами. Нерастворимые основания взаимодействуют с кислотами и способны разлагаться при высоких температурах

Fe(OH) 2 - гидроксид железа (II), Cu(OH) 2 - гидроксид меди (II), NaOH - гидроксид натрия

Кислоты - H n Ac

Читается в зависимости от кислотного остатка

Взаимодействуют с металлами, стоящими левее водорода в ряде активности, с оксидами, солями. Способны разлагаться при высоких температурах

H 2 SO 4 - серная кислота, HCl - соляная кислота, HNO 3 - азотная кислота

Соли - Ме х (Ас) у

Кислотный остаток металла (степень окисления)

Реагируют с кислотами, щелочами, металлами и солями

Na 2 SO 4 - сульфат натрия, CaCO 3 - карбонат кальция, KCl - хлорид калия

Рис. 3. Список названий кислот.

Генетические связи между классами основаны на взаимном превращении веществ. При химических реакциях атомы переходят от одного вещества к другому, образуя генетические ряды (ряды превращений). Металл при присоединении кислорода образует оксид, который при взаимодействии с водой превращается в основание. Из неметалла образуется кислотный оксид, который, взаимодействуя с водой, образует кислоту. Любой генетический ряд заканчивается солью.

Что мы узнали?

Неорганические вещества включают простые и сложные соединения. Простые вещества состоят из атомов одного и того же элемента. К ним относятся металлы и неметаллы. Сложные соединения включают вещества, состоящие из нескольких элементов. К ним относятся оксиды, кислоты, основания, соли и амфотерные гидроксиды. Все вещества генетически связаны между собой. Из простого вещества можно получить более сложное вещество. Наиболее сложными веществами считаются соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 102.

Философская истина: все в нашем мире относительно, – справедлива и для классификации веществ и их свойств. Великое многообразие веществ во Вселеннойи на нашей планете состоит всего лишь из 90 химических элементов. В природе встречаются вещества, построенные элементами с порядковыми номерами с 1 по 91 включительно. Элемент 43 – технеций, в настоящее время на Земле в природе не обнаружен, т.к. этот элемент не имеет стабильных изотопов. Он был получен искусственно в результате ядерной реакции. Отсюда и название элемента – от греч. téhnos – искусственный.
Все земные природные химические вещества, построенные из 90 элементов, можно разделить на два больших типа – неорганические и органические.
Органическими веществами называют соединения углерода за исключением простейших: оксидов углерода, карбидов металлов, угольной кислоты и ее солей. Все остальные вещества относятся к неорганическим.
Органических веществ насчитывается более 27 млн – гораздо больше, чем неорганических, число которых по самым оптимистическим подсчетам не превышает 400 тыс. О причинах многообразия органических соединений мы поговорим чуть позже, а пока отметим, что резкой границы между двумя этими группами веществ не существует. Например, соль изоцианат аммония NH4NCO считается неорганическим соединением, а мочевина (NH2)2CO, имеющая точно такой же элементный состав N2H4CO, – вещество органическое.
Вещества, имеющие одинаковую молекулярную формулу, но разное химическое строение, называются изомерами.
Неорганические вещества принято делить на два подтипа – простые и сложные (схема 1). Как вы уже знаете, простыми называют вещества, состоящие из атомов одного химического элемента, а сложные – из двух и более химических элементов.
Схема 1

Классификация неорганических веществ

Казалось бы, число простых веществ должно совпадать с числом химических элементов. Однако это не так. Дело в том, что атомы одного и того же химического элемента могут образовывать не одно, а несколько различных простых веществ. Такое явление, как вы знаете, называют аллотропией. Причинами аллотропии может быть разное число атомов в молекуле (например, аллотропные модификации элемента кислорода – кислород О2 и озон О3), а также различное строение кристаллической решетки твердого вещества (например, уже знакомые вам аллотропные видоизменения углерода – алмаз и графит).
В подтипе простых веществ выделяют металлы, неметаллы и благородные газы, причем последние часто относят к неметаллам. В основе такой классификации лежат свойства простых веществ, обусловленные строением атомов химических элементов, из которых эти вещества образованы, и типом кристаллической решетки. Всем известно, что металлы проводят электрический ток, теплопроводны, пластичны, обладают металлическим блеском. Неметаллы, как правило, такими свойствами не обладают. Наша оговорка «как правило» не случайна, и она еще раз подчеркивает относительность классификации простых веществ. Некоторые металлы по свойствам напоминают неметаллы (например, аллотропная модификация олова – серое олово – порошок серого цвета, не проводит электрический ток, лишено блеска и пластичности, тогда как белое олово, другая аллотропная модификация, – типичный металл). Напротив, неметалл графит, аллотропная модификация углерода, весьма электропроводен и обладает характерным металлическим блеском.
Самая общая классификация сложных неорганических веществ хорошо вам знакома из курса химии основной школы. Здесь выделяют четыре класса соединений: оксиды, основания, кислоты и соли.
Деление неорганических веществ на классы проводят на основании их состава, который, в свою очередь, отражается на свойствах соединений. Напомним определения представителей каждого класса.
Оксиды – сложные вещества, состоящие из двух элементов, один из которых – кислород в степени окисления –2 (например, Н2О, СО2, CuO).
Основания – это сложные вещества, состоящие из атома металла и одной или нескольких гидроксигрупп (например, NaOH, Ca(OH)2).
Кислоты – это сложные вещества, состоящие из атомов водорода и кислотного остатка (например, HCl, HNO3, H2SO4, H3PO4).
Соли – это сложные вещества, состоящие из атомов металла и кислотных остатков (например, NaNO3, K2SO4, AlCl3).
Подобная классификация и определения также весьма относительны. Во-первых, роль металла в основаниях и солях могут выполнять сложные частицы наподобие знакомоговам катиона аммония NH4+, состоящего только из элементов неметаллов. Во-вторых, существует достаточно многочисленная группа веществ, которые пформальным признакам (по составу) являются основаниями, а по свойствам относятся к амфотерным гидроксидам, т.е. сочетают свойства оснований и кислот. Например, гидроксид алюминия Al(OH)3 при взаимодействии с кислотой ведет себя как основание:
Al(OH)3 + 3HCl = AlCl3 + 3H2O,
а при сплавлении со щелочами проявляет свойства кислоты:
H3AlO3 + NaOH = NaAlO2 + H2O.
В-третьих, в приведенную выше классификацию сложных неорганических веществ не попадает большое число соединений, которые нельзя отнести ни к одному из перечисленных классов. Это, например, соединения, образованные двумя или более элементами-неметаллами (хлорид фосфора(V) PCl5, сульфид углерода CS2, фосген COCl2).
? 1. Какие вещества называются неорганическими, а какие – органическими? Приведите примеры. Докажите относительность такой классификации веществ.
2. Какие вещества называются простыми, а какие – сложными? Почему число простых веществ превышает число химических элементов?
3. Какова классификация простых веществ? Приведите примеры веществ каждого типа. Благородные газы являются веществами атомного или молекулярного строения? Приведите аргументы в пользу той и другой точек зрения.
4. Какие неорганические вещества называются оксидами, основаниями, кислотами, солями? Приведите примеры веществ каждого класса, проиллюстрируйте их свойства двумя-тремя уравнениями химических реакций.
5. С помощью уравнений химических реакций докажите, что амфотерные гидроксиды проявляют свойства как кислот, так и оснований.
6. Карбонат кальция (мел, мрамор, известняк) вдохновлял скульпторов, художников, поэтов. Например:

Вам также будет интересно:

Очень вкусный борщ с капустой и томатной пастой Томатная паста для борща
Красный борщ - один из самых непревзойденных супов славянской кухни. Традиционный рецепт,...
Причастие в английском языке (The Participle) Независимый причастный оборот английский язык
В английском языке причастные обороты в функции обстоятельства бывают двух типов, а...
Образец заполнения штатного расписания
Данный документ является локально нормативным актом, который применяется для оформления...
Перевод внешнего совместителя на основное место работы
Е.Ю. Забрамная, юрист, к. ю. н. А.К. Ковязин, юрист Как «сделать» из совместителя...
Габдулла Тукай: краткая биография
Габдулла Тукай - основоположник новой национальной поэзии, высоко поднявший знамя...