Овощеводство. Садоводство. Декорирование участка. Постройки в саду

Научный коммунизм - коллективность руководства Почему называют годы коллективного руководства

Язвенная болезнь Язвенное поражение желудка

Лекарственные растения Органы хвоща полевого

Зевота викисловарь. Что такое зевота. Зевание как признак болезни

Схиархимандрит иоанникий наставления - безценный дар

Акафист киприану и иустинии это защитная молитва от колдовства Акафист киприану и иустинии читает роман барановский

Чудодейственный акафист киприану и иустинии Чтение акафиста киприану и иустине

Описание Храма Преображения в с

Храм благовещения пресвятой богородицы Храм в петровском парке официальный

Как готовится каварма и что это такое?

Рататуй: рецепты пошагово

Салат из замороженной стручковой фасоли Салат из стручковой фасоли с помидорами

Рецепты глинтвейна с имбирем имбирный глинтвейн - Самое интересное в блогах

Как поссорились царь и Микадо

Цепной механизм химической реакции

Скорость цепной реакции. Цепной механизм химической реакции

Разветвлённые цепные реакции. 5

Основные понятия и стадии цепных реакций.

Цепные реакции – это сложные превращения реагентов в продукты. Особенностью цепных реакций является их цикличность . Эта цикличность обусловлена регулярным чередованием реакций с участием активных центров. Этими активными центрами могут быть атомы и свободные радикалы с высокой реакционной способностью, а также ионы и возбуждённые молекулы.

Различают реакции с энергетическими и материальными цепями в зависимости от природы активных центров. В первом случае происходит возбуждение молекулы без разрыва связей. Во втором – гомолитический распад молекулы с образованием частиц с неспаренными электронами.

Примеров цепных реакций можно привести множество: взаимодействие водорода и углеводородов с хлором и бромом, термическое разложение озона, крекинг углеводородов, реакции полимеризации и поликонденсации, ядерные реакции.

Любая цепная реакция трёхстадийна. На первой стадии образуются исходные активные центры, т.е. происходит зарождение цепи. Эти активные центры взаимодействуют со стабильными молекулами с образованием одной или нескольких активных частиц. Эта стадия имеет название стадии развития или продолжения цепи. Наконец, две активные частицы могут рекомбинировать в стабильную молекулу, в результате чего цепь обрывается, поэтому эта стадия – стадия обрыва цепи.

Первая стадия – наиболее энергоёмкая и, как правило, инициируется квантом света, участием фотосенсибилизатора, либо неустойчивыми соединениями типа пероксидов и азосоединений, а также парами легколетучих металлов (натрий, ртуть и др.) и многими неорганическими соединениями.

Стадия развития цепи может включать в себя реакции продолжения и развития цепи. Энергии активации этих элементарных стадий невелики, поэтому они протекают со значительными скоростями. К этим реакциям относятся:

1. Взаимодействие атома или свободного радикала с молекулой реагента с образованием новых свободных радикалов;

2. Взаимодействие атома или свободного радикала с молекулой реагента с образованием нового радикала и продукта реакции;

3. Мономолекулярная изомеризация радикала;

4. Мономолекулярный распад свободного радикала с образованием нового радикала и продукта;

5. Взаимодействие свободных радикалов с образованием нового радикала и продукта.

Если на стадии развития цепи протекают реакции, в результате которых число активных центров вырастает, то говорят о разветвлении цепей.

И, наконец, стадии обрыва цепи , это элементарные стадии, приводящие к исчезновению свободной валентности. Обрыв цепи может быть гомогенным (с участием инертной частицы) или гетерогенным (взаимодействие радикалов со стенкой реактора). Следует иметь в виду, что рекомбинация радикалов в объёме без участия третьей частицы невозможна, т.к. образованная молекула будет находиться в возбуждённом состоянии и требуется «отбор» лишней энергии для стабилизации молекулы, полученной рекомбинацией радикалов.

Процессы обрыва цепи в объёме протекают при больших давлениях, и скорость обрыва будет иметь второй порядок по концентрациям активных центров. В этом случае обрыв цепи называют квадратичным .

В общем случае любую цепную реакцию можно представить в виде следующей схемы:

реагент+αХ → продукт+β Y

Х и Y – активные центры.

α и β – целые числа большие или равные 0.

Исходя из этой схемы, стадии можно представить следующим образом:

α=0, β≠0 – зарождение цепи.

α=β – продолжение цепи.

α<β – разветвление цепи.

α≠0, β=0 – обрыв цепи.

Неразветвлённые цепные реакции.

Неразветвлённые цепные реакции – это реакции, включающие в себя стадии зарождения, продолжения и обрыва цепи.

Теория этих реакций разработана школой Боденштейна. Типичным, классическим примером этого типа реакций является синтез HCl из H 2 и С l 2 при действии света.

Неразветвлённые цепные реакции характеризуются понятиями звено и длина цепи. Началом звена цепи считается реакция продолжения с участием радикала, который образуется в стадии зарождения цепи. Звено цепи- это совокупность последовательных стадий реакций продолжения цепи с регенерацией активного центра, уже участвовавшего в реакции.

Например, в радикальной реакции хлорирования алкана:

звено цепи включает 2 элементарные реакции:

Сумма этих элементарных реакций приводит к молекулярной реакции. Число полных звеньев, приходящихся в среднем на каждый активный центр, образовавшийся в реакции зарождения цепи – средняя длина цепи. Так, в приведённой реакции:

В феноменологической (формальной) кинетике цепных реакций возможны два подхода. Первый основан на решении дифференциальных и алгебраических уравнений, полученных на основе закона действующих масс и механизма данной цепной реакции. Для неразветвлённых цепных реакций применим метод стационарных концентраций Боденштейна. Второй подход основан на вероятностном характере химических процессов вообще и цепных реакций в частности.

Любая активная частица, образовавшаяся в результате акта зарождения цепи, входит в цикл реакций продолжения цепи – звено цепи. При этом она реализует превращение молекул реагента в молекулы продукта и выходит из этого цикла в виде частицы, неотличимой от вошедшей в него. Далее она либо участвует в следующем звене, либо выходит из цикла путём рекомбинации. Вероятность рекомбинации одинакова на любом его звене, т.е. она постоянна. Таким образом, процессы обрыва цепи – это процессы стохастические и могут быть охарактеризованы постоянным параметром – вероятностью обрыва цепи β. Но поскольку на каждой стадии происходит либо обрыв цепи, либо продолжение, то очевидно, что вероятность продолжения цепи α=1-β .

Исходя из этого, средняя длина цепи может быть вычислена:

где r r – скорость роста цепи.

r f – скорость обрывацепи.

Очевидно, при β<<1 , т.е. при большой длине цепи:

Для цепных реакций ν сильно зависит от концентрации и чистоты реагентов, интенсивности света, температуры, материала ректора и его размеров.

Условием стационарности в неразветвлённых цепных реакциях является равенство скоростей инициирования и обрыва цепей:

r 0 = r f

Скорость реакции будет выражаться:

Для скорости изменения концентрации активных центров можно записать уравнение (при линейном обрыве цепи, т.е. при низких давлениях):

где g – удельная скорость обрыва цепи.

При n=0, t=0 и r 0 =const, g=const получаем:

Зависимость скорости реакции от времени примет вид:

где l – удельная скорость реакции продолжения цепи.

Из последнего уравнения видно, что при , т.е. устанавливается стационарный режим.

Теория обрыва цепей разработана Н.Н. Семёновым .

Различают диффузионную и кинетическую области реакции обрыва цепи. В кинетической области скорость обрыва определяется скоростью адсорбции частиц на стенке. Эта скорость пропорциональна и зависит от - вероятности захвата стенкой свободных радикалов ( ). Константа скорости обрыва цепи для цилиндрического сосуда рассчитывается по уравнению:

где D – коэффициент диффузии,

d – диаметр реактора,

Средняя скорость (арифметическая).

Если обрыв цепи обусловлен диффузией, то

В кинетической области:

Разветвлённые цепные реакции.

Цепные реакции, включающие стадии зарождения, разветвления и обрыва цепи называются разветвлёнными. Это процессы окисления белого фосфора и фосфина, водорода и оксида углерода (IV ).

Теория этих реакций разработана Н.Н. Семёновым и Хиншелвудом. Было показано, что при описании развития этих реакций система кинетических уравнений для активных центров может быть сведена к уравнению для активных центров одного вида.

В дифференциальном уравнении появляется член, учитывающий скорость образования активных центров.


где

После интегрирования получаем:

где gn – скорость гибели активных центров.

fn – скорость образования активных центров.

По аналогии с неразветвлёнными цепными реакциями можно получить выражение для скорости:

где l – удельная скорость реакции продолжения цепи.

Анализ этих уравнений показывает:

а) t =0

т.е. в начальный момент n и r линейно зависят от t .

б)

и .

т.е. с течением времени устанавливается стационарный режим.

2. т.е.

и

т.е. по истечению некоторого времени, если скорость образования активных центров превышает скорость их гибели, скорость процесса экспоненциально возрастает и по завершению периода индукции заканчивается взрывом даже при постоянной температуре. В этом случае воспламенение обусловлено спонтанным ростом скорости реакции из-за быстрого размножения активных центров.

3. f = g

Тогда выражение для скорости после раскрытия неопределённости по правилу Лопиталя примет вид:

т.е. реакция протекает без воспламенения, часто с чрезвычайно малой скоростью.

Дифференциальное уравнение

для конкретных реакций можно получить, как было показано Н.Н, Семёновым, методом частично стационарных концентраций. Метод стационарных концентраций для цепных реакций неприменим, поскольку концентрация одного из активных центров существенно возрастает в ходе процесса. Так, при окислении водорода в соответствии с общепринятым механизмом можно считать:

Но

т.е. при определении скорости убыли атомарного водорода необходимо решить полное дифференциальное уравнение.

Анализ кинетических уравнений позволяет объяснить удивительные явления при окислении фосфора и водорода. Было обнаружено экспериментально, что при окислении воспламенение наблюдается только при определённых давлениях. Это можно показать графически.

В области с координатами точки А реакционная смесь не воспламеняется. Чтобы смесь воспламенилась, можно не только увеличить температуру до Т 1 , но и уменьшить давление до р 1 , т.е. для этих реакций наблюдается явление увеличения скорости реакции при уменьшении числа частиц в единице объёма, что противоречит закону действующих масс.

Эта закономерность объясняется следующим образом. При малых давлениях увеличивается длина свободного частиц и увеличивается вероятность обрыва цепи на стенках реактора, т.е. реакция переходит в стационарный режим:

при .

При давлениях в области воспламенения разветвление преобладает над обрывом, т.е.

и скорость процесса становится экспоненциальной. При дальнейшем увеличении давления возрастает вероятность квадратичного обрыва цепей, и система вновь переходит на стационарный режим.

Примером разветвлённой цепной реакции является реакция деления урана:

В результате реакции выделяется энергия и в форме теплоты передаётся в окружающую среду, но в каждом акте деления урана образуется в среднем 2,5 нейтрона, которые «размножаются» в геометрической прогрессии и приводят к лавинообразному возрастанию числа делящихся атомов и к взрыву.

Отметим следующий факт. Мы рассмотрели пример, когда пределы воспламенения смеси Н 2 + О 2 не зависят от r 0 . Этот результат связан с тем, что реакции разветвления и обрыва цепей рассматриваются как линейные относительно концентрации активных центров, а квадратичные процессы не учитываются.

Однако эксперимент показывает, что увеличение скорости зарождения цепей приводит к значительному расширению области воспламенения гремучей смеси и к ускорению разветвления. В этом случае считают, что наблюдается положительное взаимодействие цепей.

Для скорости изменения концентраций с положительным взаимодействием цепей дифференциальное уравнение имеет вид:

где cn 2 – скорость квадратичного разветвления цепей.

Принципиально от разветвлённых цепных реакций отличаются реакции с вырожденным разветвлением. Для них не наблюдается перехода в режим самовоспламенения и взрыва.

Рассмотрим окисление углеводородов. При низкотемпературном окислении на одной из стадий продолжения цепи образуется гидропероксид:

может стать источником свободных радикалов:

что приводит к возникновению новых цепей.

Когда степень превращения реагентов невелика и можно пренебречь убылью промежуточных продуктов, то кинетику этих реакций можно описать системой:

р – концентрация промежуточного продукта.

l – удельная скорость продолжения цепи.

На основе электронной теории и теории строения молекул и атомов создались новые предпосылки для развития химической кинетики.

К началу XX в. химическая кинетика располагала: 1) представлением об активных молекулах; 2) классификацией реакций, рассматривающей моно-, би- и тримолекулярные; 3) учением о промежуточных продуктах; 4) первыми теориями горения и взрывов.

Уже в конце XIX в. происходит заметный поворот в направлении исследований химической кинетики. Центр тяжести постепенно перемещается с изучения реакций в жидкой фазе на изучение реакций в газовой фазе (Боденштейн, Габер и их школы). Это было обусловлено в основном двумя причинами. С научной стороны это было вызвано тем, что к реакциям в газовой фазе можно было с успехом применить блестяще развитый к тому времени аппарат кинетической теории газов. С практической стороны это вызывалось запросами развивающейся промышленности (усовершенствование двигателей внутреннего сгорания; широкое внедрение газовых реакций в химическую промышленность и т. п.).

В 1899 г. М. Боденштейн опубликовал обширное исследование под заглавием «Газовые реакции в химической кинетике». Он всесторонне исследовал образование и разложение HI, Н 2 S, Н 2 Sе и Н 2 O при разных температурах. Он показал, что эти реакции протекают согласно теории Вант-Гоффа и не образуют ложных равновесий, как на то указывали Пелабон, Дюгем и Гелье. С выводами Боденштейна согласовывались данные, полученные Д. П. Коноваловым.

Боденштейну принадлежит заслуга в разработке метода стационарных концентраций. Он показал, что концентрация активных частиц вскоре после начала реакции приобретает стационарное значение, т. е. скорость их возникновения делается равной скорости их расходования. При этом концентрацию активных частиц можно выразить через концентрацию исходных веществ.

Для элементарных реакций представления Вант-Гоффа и Аррениуса вполне справедливы. Однако большинство реально протекающих реакций, как было показано впоследствии, связано с последовательностью взаимно связанных элементарных реакций. Эта сложная суммарная реакция уже не укладывается в простые законы для моно- и бимолекулярных реакций. Поэтому отступлений от кинетических законов Вант-Гоффа накапливалось все больше и больше. Предстояло выяснить скрытые причины этих отступлений. Напрашивался вопрос, не отражают ли эти отклонения каких-то новых кинетических закономерностей, неизвестных Вант-Гоффу и Аррениусу? Новый путь для исследования природы сложных реакций проложила цепная теория.

Понятие о цепных реакциях впервые с полной отчетливостью было сформулировано в результате изучения фотохимических реакций.

Изучая закон Эйнштейна, согласно которому число прореагировавших молекул равно числу поглощенных квантов света, Боденштейн на примере фотохимической реакции соединения хлора с водородом показал, что в этом случае закон Эйнштейна не выполняется даже и приближенно: поглощение одного кванта света вызывало реакцию большого числа молекул. Это число испытывало значительные изменения в зависимости от условий опыта: при благоприятных обстоятельствах число реагирующих молекул доходило до 1000000 на один поглощенный квант света.

Для объяснения этого факта Боденштейн предположил, что поглощение света вызывает ионизацию поглощающей частицы, в результате чего образуются электрон и положительно заряженный остаток. Реакцию между положительным остатком и нормальной молекулой вещества Боденштейн рассматривал как первичную.

Вторичную реакцию он представлял себе как присоединение освободившегося при поглощении света электрона к нейтральным молекулам, которые становились при этом активными и тем самым обеспечивали продолжение реакции. Бели эта реакция, в свою очередь, создаст некую активную молекулу и т. д., то будет происходить ряд элементарных реакции, зависящих не от начальных условий опыта, а ют различимых факторов, влияющих па избыточную энергию молекулы. При этом может произойти обрыв вторичной реакции.

От такого ионизационного механизма реакции пришлось, однако, вскоре отказаться, так как при освещении хлора светом свободные электроны обнаружены не были. Боденштейн и Нернст предложили в связи с этим иные возможные механизмы реакции.

Боденштейн в 1916 г. предположил, что поглощение молекулой хлора светового кванта приводит не к освобождению электрона, а к непосредственному созданию активной молекулы хлора. Последняя обладает энергией, достаточной для реакции с молекулой водорода, причем образуются две молекулы соляной кислоты, одна из которых богата энергией, т. е. активна. При столкновении с другой молекулой хлора такая молекула передает ей свою энергию, и тем самым образуется новая активная молекула, взаимодействующая с молекулой водорода. Эта цель будет продолжаться до тех пор, пока молекулы соляной кислоты или хлора, являющиеся носительницами энергии, не потеряют ее каким-либо путем, например, при столкновении со стенкой сосуда или с молекулой постороннего газа (в частности кислорода, заметно тормозящего эту реакцию).

Отмечая активную молекулу звездочкой, можно представить механизм реакции, по Боденштейну, следующим образом:

Cl 2 + hν → Cl 2 ∙

Cl 2 ∙ + H 2 → HCl∙ + HCl

HCl∙ + Cl 2 → Cl 2 ∙ + HCl

Cl 2 ∙ + H 2 → HCl∙ + HCl и т.д.

В 1918 г. Нернстом был предложен иной механизм реакции. Объясняя аномалии в фотохимических реакциях, Нернст, на примере фотохимического соединения хлора с водородом, предложил следующий цепной механизм для объяснения причины большого квантового выхода этой реакции:

Cl 2 + hν → Cl + Сl

Cl + H 2 → H + HCl

H + Cl 2 → Cl + HCl

Cl + H 2 → H + HCl и т.д.

По этому механизму атомы хлора, соединяясь с молекулами водорода и образуя хлористый водород, выделяют атомы водорода, а последние, в свою очередь, соединяясь с молекулами хлора, также образуют хлористый водород и восстанавливают свободные атомы хлора. Отсюда при распадении молекул хлора под действием света и наблюдается большой выход хлористого водорода.

Изучение подобных реакций с особой наглядностью показало, что химический процесс - это далеко не «одноактная драма», в течение которой взаимодействие реагирующих молекул прямо приводит к образованию конечных продуктов реакции. В действительности же в процессе химической реакции образуются лабильные промежуточные продукты, которые взаимодействуют с молекулами исходных веществ. Наряду с образованием конечного продукта может происходит регенерация активной частицы. В этом случае реакция будет протекать по цепному механизму.

До 1925 г. попытки ряда авторов распространить представления Нернста об активной роли свободных атомов на различные реакции носили единичный характер, и концепция Нернста оставалась «как бы отдельным исключением среди всех реакций химии, которые по-прежнему продолжали трактовать с точки зрения старых представлений о непосредственных моно- и бимолекулярных процессах».

В 1919 г. Христиансен и Герцфельд и Поляньи в 1920 г. распространили представления Нереста о цепном механизме реакций на термическую реакцию брома с водородом 7 .

В 1923 г. Христиансен и Крамере в Копенгагене использовали представления о цепном характере химических реакций для объяснения отклонений константы К 2 в мономолекулярной теории распада N 2 О 5 . Авторы применили к тепловым реакциям идею «энергетической цени», согласно которой активными свойствами обладают «горячие» молекулы, образующиеся в ходе реакции за счет выделения теплоты реакции. Такие активные молекулы при столкновении с другими возбуждают элементарный акт реакции, инициируя тем самым ценную реакцию.

Христиансен и Крамере показали, что химическая реакция сама является генератором активных центров. Исследования этих химиков вызвали повышенный интерес к проблемам химической кинетики. Как по новым положениям, так и по своему влиянию, работы Христиансена и Крамерса заняли видное место в истории химической кинетики 20-х годов ХХ столетия.

В 1926-1929 гг. появилось почти одновременно три цикла работ в области химической кинетики. Это, во-первых, работы по изучению условий зажигания паров серы и фосфора, а также по определению температур зажигания различных газовых взрывчатых смесей, выполненные Н. Н. Семеновым и его сотрудниками в лаборатории электронной химии Государственного физико-технического рентгеновского института в Ленинграде; во-вторых, работы Хишнельвуда в Оксфорде в Англии по изучению реакции соединения H 2 + О 2 вблизи температуры взрыва; в-третьих, работы Бэкштрема по окислению бензальдегида, Nа 2 S 2 О 3 . и т. д., сделанные в лаборатории Тейлора в Ирипстопе.

В 1926 г. 10. Б. Харитон и P. Ф. Вальта в лаборатории Н. Н. Семенова изучали тушение хемилюминесценции фосфора и натолкнулись на явление прекращения свечения паров фосфора, находящегося в смеси с кислородом при низких давлениях. Если давление было меньше, чем 0,05 мм, свечение отсутствовало, и всякий раз, когда давление кислорода превышало это критическое значение, свечение снова мгновенно возникало.

Объяснение этого удивительного явления, данное Семеновым, вышло далеко за рамки простого описания частного случая свечения паров фосфора. Семенов, на основе изучения реакции окисления фосфора, сделал далеко идущий вывод о том, что подобная реакция является цепной реакцией, протекающей при участии свободных радикалов, играющих роль активных центров.

В книге «Цепные реакции» Семенов отмечает два этапа в развитии цепной теории. Первый из них был связан с изучением фотохимических реакций и привел к созданию теории неразветвляющихся цепей; второй, начавшийся с 1927 г., связан с изучением термических реакций воспламенения и ознаменован введением в цепную теорию представлений о разветвлении цепей. «…Та роль, какую сыграла реакция Н 2 + С1 2 в первом этапе, выпала на долю реакции окисления фосфора и окисления водорода во втором»,- пишет Семенов.

Исходное положение цепной теории заключается в том, что энергия, выделяющаяся при экзотермической реакции (Е + Q), в первый момент сосредоточивается в продуктах реакции, создавая частицы с очень большой энергией. Таким образом, сама реакция, наряду с тепловым движением, может стать источником активаций. Отсюда, каждая элементарная реакция вызывает следующую, создавая тем самым цепь реакций.

Если α есть вероятность такого рода продолжения цепи, а n 0 - число первичных реакций, создаваемых ежесекундно тепловым движением, то скорость реакций:

W 0 = n 0 /(1−α) = n 0 /β

где β = 1−α - есть вероятность обрыва цепи.

Появление первой работы по горению фосфора было встречено за границей сначала очень неприязненно, вспоминал Семенов и 1932 г. Виднейший ученый в области кинетики газовых реакций Боденштейн и печати резко критиковал работу, считая результаты ошибочными. Он писал примерно так: «Снова появилась попытка вызвать к жизни явления ложных равновесий, невозможность которых была доказана 40 лет назад. К счастью, и эта попытка, как и все прежние, основана па методических ошибках». Только после того, как мы другими методами доказали правильность наших результатов и после того, как нами была создана теория, объясняющая эти явления,- цепная теория воспламенения, отношение заграничных ученых, и прежде всего самого Боденштейна, резко переменилось. В ноябре 1927 г. Боденштейн в письме ко мне отказывается от предыдущего мнения в таких словах: «Нашу новую статью об окислении паров фосфора я проштудировал с большим интересом и скажу, что теперь против Вашего толкования я ничего не могу возразить. Я могу, таким образом, поздравить Вас и Харитона с замечательными и высоко интересными результатами». В марте 1928 г. после появления моей теоретической статьи и статьи об окислении серы он пишет мне: «Ваши результаты с горением фосфора и серы по отношению к классической кинетике революционны. И если эти опыты действительно верны, то придется ввести в классическую кинетику существенные изменения».

Изучение механизма сложных реакций и природы промежуточных продуктов потребовало разработки новой аппаратуры и методов (кинетических) для исследования деталей химического процесса.

«Самое важное,- писал Семенов,- что теория шла здесь рука об руку с новыми экспериментами, приводящими к открытию новых и объяснению старых, давно забытых и совершенно непонятных явлений. Эти работы привели к количественным формулировкам новых цепных закономерностей, общих для целого большого класса явлений, и очертили ту область реакций, которая специфична для новых представлений. Они подняли широкий интерес к этой новой области реакций и вызвали к жизни в 1930-1933 гг. широкую волну новых кинетических исследований. Поэтому мы склонны считать, что именно эти работы положили фундамент нового развития химической кинетики».

С этого момента начинается новый этап в развитии химической кинетики, когда теоретически и экспериментально было показано, что цепной механизм реакции является основным типом химических превращений, осуществляющихся при помощи свободных атомов и радикалов.

В 1932 г. Семеновым была развита теория взаимодействия цепей, основанная на связи обычной химической цепи с энергетической цепью, где основную роль играют «горячие» молекулы, обладающие повышенной химической активностью. Семенов показал, что цепной механизм большинства реакций не случаен; он зависит от самых общих и глубоких соотношений между энергией химической связи, теплотой и энергией активации реакции.

В 1934 г. вышла монография Семенова «Цепные реакции», где на богатом экспериментальном материале была развита теория разветвления цепей и их обрывов на стенках сосудов.

В заключении своей книги Семенов писал: «…Разработка статистики стационарных процессов, соединения с детальным изучением элементарных актов передачи энергии, и природы молекул и атомов, возникающих при этом в качестве промежуточных продуктов, является, по нашему мнению, главной линией развития теоретической химии на ближайшие десятилетия».

Представления о разветвленных реакционных цепях, предложенные Семеновым для объяснения кинетических особенностей сложных окислительных реакций, явились началом нового этапа в изучении механизма сложных реакций. За последние 30 лет появилось огромное количество работ, посвященных детальному изучению механизма различных процессов, промежуточных продуктов, в частности свободных радикалов.

Большой цикл исследований был посвящен изучению элементарных химических процессов, где свойства каждой отдельной молекулы проявляются наиболее четко. Это позволяло глубоко проникнуть в самый внутренний механизм сложного химического процесса, состоящего из совокупности элементарных процессов.

Важным достижением ценной теории явилось экспериментальное доказательство существования значительных концентраций в зоне газовых реакций свободных радикалов - гидроксила и атомов водорода, взаимодействием которых с молекулами смеси и определяется ход реакций.

В 30-е годы большое внимание в связи с этим, было обращено на изучение природы активных промежуточных продуктов - химически неустойчивых частиц, появляющихся в процессе развития химической реакции и принимающих непосредственное участие в ее течении.

О природе активных центров - участников химических реакционных цепей,- долгое время ничего не было известно. В 30-е годы для изучения физико-химических свойств химически неустойчивых свободных атомов и радикалов, в частности, свободного гидроксила, с успехом был применен спектроскопический метод поглощения, разработанный Ольденбертюм в США, и метод линейчатого поглощения, разработанный В. Н. Кондратьевым в СССР.

«До недавнего времени,- писал В. Н. Кондратьев в 1944 г.,- развитие химической кинетики шло по линии установления микроскопических закономерностей и построения формальных кинетических схем реакции без должного их химического обоснования. Вопрос о химической природе активных центров реакции либо оставлялся совершенно открытым, либо же решался на основании более или менее убедительных косвенных соображений, не подкрепленных прямым опытом. Однако развитие современных физико-химических методов исследования в корне изменило положение вещей и положило начало систематическому изучению реакций под углом зрения химического обоснования их внутреннего механизма. Из новых эффективных методов идентификации и анализа активных промежуточных веществ в первую очередь нужно упомянуть спектроскопический метод; метод орто- и пара-водорода; метод зеркал и, наконец, метод радиоактивных индикаторов».

Работы В. Н. Кондратьева и его учеников дали количественные измерения концентрации промежуточных веществ, что позволяет устанавливать количественные закономерности, являющиеся предпосылкой не только химического, по и математического обоснования механизма реакции.

Экспериментальное доказательство участия свободных радикалов, осколков молекул о ненасыщенными валентностями в отдельных стадиях химических реакций имело первостепенное значение для дальнейшего развития химической кинетики.

ГЛАВА 22. ЦЕПНЫЕ РЕАКЦИИ

22.1. Основные понятия о цепных реакциях

В ряде случаев в химических реакциях в качестве промежуточных продуктов выступают такие активные частицы как свободные атомы и радикалы, которые имеют свободные валентности и потому обладают высокой реакционной способностью. Эти частицы вступают в реакции, в результате которых вновь возникают свободные атомы и радикалы. Такая последовательность периодически повторяющихся реакций с участием активных частиц (свободных атомов и радикалов) называется цепной реакцией .

Хотя процесс образования свободных атомов или радикалов требует большой энергии активации, но их высокая реакционная способность и возникновение новых активных частиц при реакциях с насыщенными молекулами приводят к тому, что скорость цепных реакций оказывается обычно значительно выше скорости нецепных реакций. Зарождение в начале реакции небольшого количества реакционноспособных частиц приводит к превращению большого количества исходных веществ. Так как цепные реакции протекают циклически, то активная частица, возникающая в конце цикла, дает начало новому циклу, в конце которого происходит вновь регенерация активной частицы.

К цепным относятся реакции различных классов. По цепному механизму протекают, например, реакции горения или медленного окисления в газовой фазе:

2Н 2 + О 2 2Н 2 О

СН 4 + 2О 2 СО 2 + 2Н 2 О

К цепным относятся многие реакции с участием углеводородов (реакции полимеризации, разложения), фотохимические реакции (образование НСl, НВr, СОСl 2 и др.), цепные ядерные реакции – распад урана-235 или плутония в ядерном реакторе или бомбе.

Характерной особенностью цепных реакций является большая чувствительность скорости этих реакций к наличию некоторых примесей. Например, тщательно высушенные водород и кислород реагируют между собой очень медленно, но реакция протекает с нормальной скоростью в присутствии незначительного количества паров воды. Смесь водорода с хлором не реагирует в темноте при комнатной температуре, но быстро реагирует при введении в систему малых количеств паров натрия. В других случаях присутствие примесей приводит к резкому снижению скорости реакции. Например, при фотохимическом инициировании реакции водорода с хлором скорость образования хлороводорода уменьшается примерно в тысячу раз в присутствии одного процента кислорода.

На скорость многих газовых реакций влияет форма и материал сосуда, в котором протекает реакция. Обычно реакции замедляются при увеличении отношения S /V (S – площадь поверхности сосуда,V – его объем). Это отношение практически можно изменять, вводя в сосуд осколки материала сосуда – стекла, кварца и т.п.

Для многих реакций окисления в газовой фазе характерно то, что быстрая реакция (самопроизвольное воспламенение) протекает лишь в определенных пределах давления и температуры. На рисунке 22.1 показана зависимость пределов воспламенения от давления и температуры, которая наблюдается при окислении водорода, паров фосфора, сероуглерода и др.

Рис. 22.1. Пределы воспламенения для реакции окисленияводорода

Воспламенение смеси происходит только в условиях, соответствующих на рисунке заштрихованной площади, которая получила названиеполуострова воспламенения . Вне пределов полуострова воспламенения не происходит и реакция идет с малой скоростью или практически вовсе не происходит. Исходя из точкиА , воспламенение можно вызвать нагреванием смеси или снижением давления смеси до значений, лежащих в области между кривыми II и I.

Объяснение указанных особенностей дает теория цепных реакций, начало развития которой относится к 1913 г., когда Боденштейном было введено понятие цепной реакции.

Различают два типа цепных реакций: с неразветвленными и разветвленными цепями . Примером первого типа реакций может служить реакция образования хлороводорода из водорода и хлора

Н 2 + Сl 2 2НСl,

схема механизма которой была предложена Нернстом.

В схеме можно выделить три группы реакций. Начинается процесс с реакции зарождения цепи :

Cl 2  Cl + Cl

Эта реакция диссоциации молекулы хлора на атомы может происходить при поглощении света

Cl 2 +h Cl + Cl,

термическим путем – при столкновении, например, двух молекул хлора с повышенной энергией:

Cl 2 + Cl 2  Cl + Cl + Cl 2 ,

химическим путем – например, при взаимодействии молекулы хлора с атомом натрия, пары которого введены в систему. Образующиеся атомы хлора обладают высокой реакционной способностью и вступают в дальнейшее взаимодействие с исходными веществами, протекает вторая группа реакций – развитие цепи :

Cl + H 2 HCl + H

H + Cl 2 HCl + Cl

В результате первой реакции появляется атом водорода, который легко вступает во взаимодействие молекулой хлора, в результате чего образуется хлороводород и регенерируется атом хлора, который дает начало следующему звену:

Cl + H 2 HCl + H

Cl  H  Cl  H  Cl  ...

При благоприятных условиях такая цепь может состоять из многих тысяч звеньев. В результате на одну первоначально активированную молекулу хлора образуется не две молекулы HCl, как при обычной бимолекулярной реакции, а тысячи и десятки тысяч молекул.

Для приведенной реакции характерным является то, что на одну вступающую в реакцию активную частицу Сl или Н вновь образуется одна активная частица. Такие цепи и называют неразветвленными .

Кроме приведенных реакций зарождения и развития цепи в системе протекает третья группа реакций – реакции обрыва цепи , приводящие к гибели активных частиц при соударении с какой-либо третьей частицей М или стенкой сосуда S:

Н + Н + М Н 2 + М

Н + Н + S Н 2 + S

Cl + Cl + M(S)  Cl 2 + M(S)

Н + Cl + M(S)  HCl + M(S)

В присутствии, например, кислорода обрыв цепи может происходить в результате реакции

Н + О 2 + М
+ М

Образующийся малоактивный радикал
гибнет на стенках сосуда или по реакции

+ НН 2 + О 2

При низких давлениях активные центры гибнут в основном на стенках сосуда, а при высоких давлениях происходит тримолекулярный обрыв в объеме. Поэтому для цепных реакций и характерны особенности, о которых говорилось выше – зависимость скорости реакции от величины удельной поверхности сосуда, от присутствия какого-либо инертного вещества, от давления или концентрации реагирующих веществ.

Кинетическое уравнение неразветвленной цепной реакции можно получить, исходя из механизма реакции. Например, детальное изучение реакции между водородом и бромом

Н 2 +Br 2 2HBr

показало, что реакция проходит в несколько элементарных стадий с разными константами скорости k :

Br 2 Br+Brk 1

Br+H 2 HBr+H k 2

H+Br 2 HBr+Brk 3

H+HBrH 2 +Brk 4

Br+BrBr 2 k 5

Исходя из этой схемы, скорость образования бромистого водорода можно представить уравнением:


+

. (22.1)

Рассматривая атомы брома и водорода как промежуточные продукты, можно применить к ним принцип стационарных концентраций Боденштейна (см. разд. 20.6):

Из суммы этих равновесий находим концентрацию атомов брома:

. (22.4)

После подстановки этой концентрации в уравнение (22.3) получим концентрацию атомов водорода:

. (22.5)

Подстановка концентраций атомов брома и водорода в уравнение (22.1) дает окончательное уравнение для скорости реакции:

. (22.6)

Это уравнение совпадает с уравнением (20.6), полученным по экспериментальным данным.

В ряде реакций в результате одного элементарного акта может возникать не одна, а две или больше химически активных частиц, т.е. происходит разветвление цепи. Такие реакции получили название разветвленных цепных реакций . В таких реакциях в начальный период времени число активных частиц, а следовательно, и скорость реакции лавинообразно нарастают вплоть до того момента, когда из-за израсходования исходного вещества скорость реакции начинает уменьшаться. Примером таких процессов может служить реакция окисления водорода, механизм которой по современным представлениям можно представить совокупностью последовательно протекающих элементарных химических актов:

Зарождение цепи

(4)
+ Н 2 Н 2 О + Н Продолжение цепи

Разветвление цепи

Обрыв цепи на стенке

(9) Н + О 2 + М
+ М Обрыв цепи в объеме

Образующиеся малоактивные радикалы
могут распадаться на стенке:

2
+ SН 2 О 2 + О 2 + S

При больших давлениях возможны реакции в объеме:

(10)
+ Н 2 Н 2 О 2 + Н Продолжение цепи через

(11)
+ Н 2 ОН 2 О 2 +
малоактивний радикал

Если разветвление цепи осуществляется часто, то даже одна первоначально возникшая цепь может привести к развитию многих цепей. В предельном случае можно представить, что разветвление происходит в каждом звене, и тогда говорят о сплошь разветвленной цепной реакции. В других случаях разветвление может происходить более редко.

Существование нижнего и верхнего пределов воспламенения качественно можно объяснить следующим образом. При давлениях, меньших нижнего предела, активные частицы легко диффундируют к стенкам сосуда, где происходит их гибель. Обрыв цепей на стенках преобладает над разветвлением, и быстрая реакция не развивается. При повышении давления диффузия к стенкам затрудняется, а возрастает число двойных соударений типа (5) и (6), которые ведут к разветвлению цепей; зарождение и разветвление цепей начинают преобладать над обрывом. В результате реакция самоускоряется и может закончиться самовоспламенением или взрывом, что и происходит внутри полуострова воспламенения.

Рис. 22.2. Зависимость скорости разветвленной цепной реакции от времени внутри полуострова воспламенения

При дальнейшем повышении давления все более вероятными становятся тройные соударения в объеме, приводящие к обрыву цепей. Если давление превышает значение верхнего предела II (рисунок 22.1), обрыв начинает преобладать над развитием цепей и возможность быстрого протекания реакции исчезает.

Воспламенению горючей смеси внутри полуострова воспламенения предшествует индукционный период t инд (рис. 22.2). Он объясняется тем, что сначала число цепей может быть очень малым и практически реакция незаметна из-за недостаточной чувствительности методов анализа. Но по истечении некоторого времениt инд число цепей очень быстро нарастает вследствие их размножения и наступает самовоспламенение или взрыв. Зависимость скорости реакцииv от времениt можно представить уравнением:

, (22.7)

где A и– постоянные для данной реакции и зависящие от ряда условий. При выводе этой зависимости не учитывалось уменьшение концентрации реагирующих веществ вследствие выгорания, поэтому стремление скорости к бесконечности с течением времени не имеет физического смысла – скорость становится большой, но не бесконечной.

В некоторых случаях наблюдается и третий предел воспламенения (рис. 22.1), лежащий при более высоких давлениях. Его существование связывают с протеканием цепных реакций за счет малоактивных радикалов или с развитием теплового взрыва.

22.2. Элементарная теория цепных реакций

Имеется два варианта теории цепных реакций – более строгий, основанный на решении системы дифференциальных уравнений, и менее строгий, но более наглядный вероятностный вариант, который и рассматривается далее.

Важной характеристикой цепной реакции является средняя длина цепи - среднее число элементарных реакций, вызываемых одной активной частицей (атомом или радикалом), возникшей первоначально каким-либо независимым путем. Еслиn o – число таких независимо возникающих частиц в единицу времени в единице объема, тоn o можно назватьскоростью зарождения цепей .

Величина, обратная средней длине цепи, представляет собой вероятность обрыва цепи . Эту связь можно понять с помощью схематического изображения цепи на рисунке 22.3. На схеме точка означает появление и регенерацию активной частицы, а крестик – ее гибель, т.е. обрыв цепи.

Рис. 22.3. Схематическое изображение цепной реакции:

а – неразветвленная цепь; б – разветвленная цепь

На один благоприятствующий случай – обрыв – приходится всегослучаев, следовательно,

 =1/. (22.8)

Допустим также возможность разветвления цепи – появление в каком-либо звене двух или более активных частиц и охарактеризуем такую возможность вероятностью разветвления цепи .

Обозначим через время, в течение которого в среднем протекает одно звено цепной реакции. Тогда произведение равно среднему времени прохождения всей цепи от момента зарождения до обрыва. Концентрация активных частиц, т.е. их число в единице объема, пусть будетn . Скорость изменения концентрации этих частиц будет равна разности скоростей их образованияn o и исчезновения.

Если длина цепи = 1 (т.е. фактически цепь отсутствует), то активная частица гибнет в каждом звене. Тогда за среднее время развития одного звенапрореагируют всеn частиц, а скорость исчезновения будет равнаn /частиц/см 3 с . Если же цепи развиваются и их средняя длина равна> 1, частица в среднем будет реагироватьраз, а среднее время ее жизни будет равно . Следовательно, скорость уменьшения концентрации частиц выразится соотношением

. (22.9)

Если возможно разветвление цепи, т.е. > 0, то его влияние можно учесть, считая, что разветвление действует как бы в направлении, обратном обрыву, удлиняя цепь и уменьшая вероятность обрыва до величины (). Тогда для скорости изменения концентрации активных частиц можно записать выражение:

. (22.10)

Решение этого дифференциального уравнения можно провести следующим образом. Для простоты записи введем обозначение a = ()/. Тогда

. (22.11)

Полагаем вначале, что n o = 0, и после разделения переменных получаем:

, (22.12)

интегрирование которого дает:

lnn = –at + lnZ (t ), (22.13)

где Z (t ) – некоторая условная “постоянная” интегрирования. Тогда

n =Z (t )e –at . (22.14)

Продифференцируем это уравнение с учетом того, что Z не является постоянной величиной:

Из сопоставления этого уравнения с уравнением (22.11) следует, что

(22.16)

. (22.17)

После интегрирования этого уравнения получим

, (22.18)

где I – постоянная интегрирования. Подстановка этой величины в уравнение (22.15) дает

. (22.19)

Из условия, что в начальный момент реакции (t = 0) величинаn = 0, следует, что

(22.20)

. (22.21)

После подстановки значения a получим

. (22.22)

Скорость реакции v можно определить как скорость увеличения концентрации молекул продукта реакции. Так как в одном звене за времяпоявляется одна молекула, то общее число молекул, образующихся в единице объема за единицу времени, равноn /. Таким образом, мы получаем основное уравнение теории цепных реакций:

. (22.23)

Рассмотрим использование этого уравнения для некоторых частных случаев.

При протекании неразветвленной цепной реакции = 0. Так как средняя длина цепи= 1/, то скорость такой реакции

. (22.24)

Рис. 22.4. Зависимость скорости цепной реакции от времени:

1 – = 0; 2 – 0 < < ; 3 – >

Как следует из этого уравнения, скорость реакции должна нарастать с течением времени и достигать предела, равногоn o =n o /(рис. 22.4), т.е. система должна достигать стационарного состояния, в котором скорость реакции постоянна. Эта скорость враз больше скорости зарождения первичных реакционноактивных частицn o , т.е. скорости реакции в отсутствие цепей (=1).

При возможности протекания разветвленной цепной реакции вероятность разветвления может оказаться меньше вероятности обрыва, т.е. 0 < <. В этом случае, согласно уравнению (22.23), система также должна достигать стационарной скорости, но эта скорость больше, чем в первом случае:

Если же вероятность разветвления больше вероятности обрыва, т.е. >, уравнение (22.23) принимает вид:

, (22.25)

где A иявляются положительными постоянными. Полученное уравнение совпадает с приведенным ранее уравнением (22.7). Уравнение показывает, что скорость реакции может стать бесконечно большой (рис. 22.4), т.е. свидетельствует о возможности развития цепного воспламенения или взрыва.

Следует, однако, отметить, что полученные зависимости относятся к некоторым идеализированным условиям протекания реакции – предполагается, что концентрации исходных веществ поддерживаются постоянными, а продукты реакции выводятся из реакционной зоны. В реальных условиях, например, при проведении реакции в замкнутом сосуде, происходит “выгорание” исходных веществ, а продукты остаются в реакционной смеси. Поэтому для неразветвленных цепных реакций или для разветленных реакций с <скорость проходит через максимум (пунктир на рис.22.4). Возможно, что стационарное состояние вообще не будет достигнуто, так как максимальная скорость может оказаться меньше стационарной. В случае разветвленной цепной реакции с>учет выгорания реагентов должен дать, как уже указывалось ранее, очень большую, но все же конечную скорость.

Условие >соответствует протеканию реакции в области полуострова воспламенения, а условие> – вне него. Таким образом, теория разветвленных цепных реакций количественно объясняет существование нижнего и верхнего пределов воспламенения.

К воспламенению или взрыву может также привести, независимо от механизма реакции, саморазогрев реагирующей смеси. По уравнению Аррениуса, скорость реакции увеличивается при повышении температуры по экспоненциальному закону, в то время как скорость теплоотвода – более медленно (пропорционально разности температур). В случае экзотермической реакции, если теплота не будет отводиться из реакционной зоны с достаточной скоростью, реакционная смесь начнет саморазогреваться, а скорость реакции все более возрастать. Развитие этих процессов может привести к воспламенению реакционной смеси или взрыву. В этом случае говорят о тепловом самовоспламенении (тепловом взрыве ). Кинетика теплового самовоспламенения внешне может не отличаться от кинетики цепного воспламенения, что нужно иметь в виду при изучении реакций, переходящих в воспламенение или взрыв.

Цепные реакции

химические и ядерные реакции, в которых появление промежуточной активной частицы (свободного радикала, атома или возбуждённой молекулы - в химических, нейтрона - в ядерных процессах) вызывает большое число (цепь) превращений исходных молекул или ядер вследствие регенерации активной частицы в каждом элементарном акте реакции (в каждом звене цепи). О ядерных процессах см. Ядерные цепные реакции .

В изученных неразветвлённых химических Ц. р. активные центры - свободные атомы и радикалы, способные легко, с малой энергией активации (См. Энергия активации) реагировать с исходными молекулами, порождая наряду с молекулой продукта также новый активный центр. В разветвленных химических Ц. р. в качестве активных центров могут выступать также возбуждённые молекулы, а в т. н. вырожденно-разветвлённых реакциях (см. ниже) - также нестабильные молекулы промежуточных веществ.

Неразветвлённые Ц. р. Химические процессы с неразветвлёнными цепями можно рассмотреть на примере фотохимической реакции между водородом и хлором. В этой Ц. р. молекула хлора, поглощая квант света, распадается на два атома. Каждый из образовавшихся атомов хлора начинает цепь химических превращений; в этой цепи атомы хлора и водорода выступают в качестве активных частиц. Длина цепи может быть очень большой - число повторяющихся элементарных реакций продолжения цепи на один зародившийся активный центр может достигать десятков и сотен тысяч. Обрыв цепей происходит в результате рекомбинации атомов в объёме реактора, захвата атомов его стенкой с последующей рекомбинацией на стенке, образования неактивного радикала при реакции активных центров с молекулами всегда присутствующих примесей [например, при реакции между атомарным водородом и молекулами кислорода (примесями) с образованием радикала HO 2 ; этот радикал в условиях не очень высоких температур не реагирует с исходными молекулами].

Реакцию между H 2 и Cl 2 , вызванную действием кванта света h ν, можно представить схемой:

В последних двух стадиях М - любая третья частица (атом или молекула), которая нужна для того, чтобы отнять часть энергии у образующихся частиц Cl 2 и HO 2 и тем самым сделать невозможным их обратный распад.

Скорость Ц. р. чрезвычайно чувствительна к скоростям зарождения и обрыва и поэтому зависит от наличия химических примесей, от материала и состояния стенок реакционного сосуда, а также от его размера и формы.

Скорость реакций с неразветвлёнными цепями (W) равна W = w 0 ν = w 0 W п /W oбр

где w 0 - скорость зарождения цепей, ν - длина цепей, W п и W oбр - соответственно скорости продолжения и обрыва цепей (W oбр может быть составной величиной, отражающей различные пути обрыва цепи).

По неразветвлённо-цепному механизму протекает большое число практически важных реакций, в частности Хлорирование , ряд реакций жидкофазного окисления (См. Окисление) органических соединений, термический Крекинг . Своеобразным процессом с неразветвлёнными цепями является также Полимеризация , при которой цепь реакций одновременно определяет и длину полимерной молекулы.

Образование активных частиц, необходимых для зарождения цепей, происходит при разрыве одной из связей в молекуле и всегда сопряжено с затратой энергии. Свободные радикалы можно получать за счёт внешних источников энергии, например кванта света, поглощаемого молекулой при фотохимической реакции, а также энергии электронов, образующихся в электрическом разряде или воздействии α-, β- и γ-излучения. Наиболее важно в практическом отношении образование свободных радикалов за счёт внутренней тепловой энергии системы. Но энергия связи в большинстве молекул велика и, значительно велика энергия их прямой диссоциации на радикалы, поэтому путём непосредственного распада исходных молекул Ц. р. инициируются лишь при более или менее высоких температурах. Часто, однако, зарождение цепей происходит при участии различных примесей-инициаторов. Такими примесями могут быть молекулы со слабой связью, при распаде которых легко образуются радикалы, начинающие цепи, или молекулы, легко вступающие в окислительно-восстановительные реакции, например Fe 2+ + H 2 O 2 → Fe 3+ + OH - + OH. Инициирование может происходить также на стенке реакционного сосуда. Энергия активации при этом понижается благодаря тому, что в системе используется энергия адсорбции одного из радикалов. Цепи могут зарождаться и в результате реакций между молекулами. Некоторые из таких реакций протекают достаточно быстро даже при невысоких температурах, например F 2 + C 2 H 4 → F + C 2 H 4 F.

Концепция неразветвлённых Ц. р. возникла в результате работ немецкого учёного М. Боденштейна, обнаружившего (1913), что в ряде фотохимических реакций один поглощённый квант света вызывает превращение многих молекул. В частности, при образовании HCl из H 2 и Cl 2 в среднем на каждый поглощённый квант образуется до 1 000 000 молекул HCl. Поскольку один квант может активировать только одну молекулу, остальные вступают в реакцию без непосредственного воздействия света. Механизм этой реакции предложил В. Нернст (1916).

Современная теория реакций с неразветвлёнными цепями была создана и развита школой Боденштейна, а также трудами советских учёных.

Реакции с разветвленными цепями. Совершенно особыми свойствами обладают реакции, в которых цепи разветвляются. Эти реакции были обнаружены в 1926-28 группой ленинградских физиков на примере окисления паров фосфора. Было установлено, что при малом изменении какого-либо параметра реакционной системы (концентрации реагентов, температуры, размера сосуда, примесей специфических веществ) и даже при разбавлении инертным газом практически незаметная реакция скачкообразно переходит в быстрый, самоускоряющийся процесс типа самовоспламенения (См. Самовоспламенение). Это явление имеет место даже при низких температурах, когда скорость зарождения подобных процессов чрезвычайно мала, а также в условиях, когда тепловой взрыв невозможен. Поэтому вне области воспламенения (см. рис. ) реакция практически не идёт. Н. Н. Семёнов ым с сотрудниками впервые было дано объяснение этого парадоксального факта и создана количественная теория разветвленных Ц. р. Значительный вклад в развитие представлений о разветвленных Ц. р. внесли также пионерские работы С. Н. Хиншелвуд а с сотрудниками по изучению верхнего предела воспламенения. За исследования механизма химических реакций Семёнову и Хиншелвуду была присуждена в 1956 Нобелевская премия.

В ходе разветвленных Ц. р. при взаимодействии одного из активных центров возникает более чем один (часто - три) новый активный центр, т. е. происходит размножение цепей.

Примером разветвленной Ц. р. может служить окисление водорода, где разветвление и продолжение цепей происходит по схеме:

(1) Н + O 2 → OH + О - разветвление

или в сумме Н + 3H 2 + O 2 = 2H 2 O + 3H.

Наряду с образующимися в реакциях 1-3 активными центрами Н и OH, обеспечивающими развитие неразветвлённой цепи, в реакции (1) образуется атом кислорода, формально обладающий двумя свободными валентностями и способный легко входить в реакцию (3) с образованием Н и OH - ещё двух носителей цепей. Такой тип разветвления был назван материальным.

В реакциях с т. н. энергетическим разветвлением размножение цепей осуществляется за счёт возбуждённых частиц - продуктов экзотермических реакций развития цепи. Например, при взаимодействии фтора с водородом развитие цепей происходит по схеме:

(2) F + H 2 → HF* + Н

(3) Н + F 2 → HF* +F

(4) HF* + H 2 → HF + H 2 *

(5) H 2 * + F 2 → HF + H + F

В реакциях (2) и (3) наряду с атомами Н и F образуются колебательно-возбуждённые молекулы HF*, которые передают избыток энергии молекуле H 2 [реакция (4)]. В результате столкновения обогащенной энергией молекулы H 2 * с молекулой F 2 образуется молекула HF и атомы Н и F [реакция (5)], начинающие новые цепи (энергетическое разветвление). В СССР получены экспериментальные данные (1970-е гг.), которые, по-видимому, можно рассматривать как подтверждение высказанной Семеновым идеи (1934) о возможности энергетического разветвления с участием электронно-возбуждённых частиц.

Скорость разветвлённо-цепного процесса в газовой фазе в начальных стадиях (вплоть до выгорания 30-40% газа) выражается формулой

где k - константа скорости реакции активного центра с исходным веществом, [А] - концентрация исходного вещества, w 0 - скорость зарождения цепей, f и g - соответственно эффективные константы скорости разветвления и обрыва, e - основание натурального логарифма, t - время.

В условиях, когда (f - g ) > 0, концентрация активных центров и скорость W растут лавинообразно во времени. Если же (f - g ) w o . Переход от одного режима реакции к другому осуществляется практически скачком при критическом условии (f - g ) = 0.

Скорость разветвления цепей пропорциональна концентрации молекулярного реагента, вступающего в эту реакцию с активным центром. В то же время скорость гетерогенного обрыва цепей на стенке сосуда в зависимости от состояния его поверхности может не зависеть от концентрации или уменьшаться с ростом концентрации газофазной смеси. Поэтому при повышении давления, начиная с определённого его значения (первый предел), f становится больше g и происходит самовоспламенение смеси. Если обрыв цепей протекает при тройных столкновениях, то его скорость пропорциональна произведению суммарной концентрации смеси и концентрации исходного реагента, образующего с активным центром малоактивный радикал. При дальнейшем повышении давления, начиная с определённого его значения (верхний предел), обрыв превалирует над разветвлением (f g), и воспламенения не происходит. Давление, при котором f = g, называется критическим давлением.

По аналогичным причинам для разветвленных Ц. р. существует и критическая температура самовоспламенения. Поскольку скорость разветвления зависит от температуры сильнее, чем скорости обрыва, с повышением температуры область воспламенения расширяется.

Кривые, выражающие критическое давление как функцию температуры, имеют вид т. н. полуострова цепного воспламенения (см. рис. ). В качестве примера приведены полуострова воспламенения для окисления силана при различном его содержании в кислороде. Аналогичная картина наблюдается практически для всех реакций окисления и многих реакций фторирования. Экспериментально наблюдаемые зависимости полностью соответствуют теории.

При гетерогенном обрыве величина g, а значит и скорость гибели активных центров, пропорциональна отношению внутренней поверхности сосуда к его объёму, т. е. обратно пропорциональна диаметру сосуда. Соответственно существует критический диаметр. При диаметрах чуть больших критического реакция идёт с воспламенением, при меньших - реакция фактически отсутствует. Если для смесей значения f и g близки друг к другу, но всё же f g, то такие смеси можно воспламенить, добавляя инертный газ. Добавление инертного газа при неизменной концентрации реагентов затрудняет диффузию активных центров к стенкам сосуда и этим уменьшает скорость обрыва (величину g ).

Если в системе присутствует примесь вещества, в реакции с которым активные центры погибают, то выше некоторой критической концентрации этого вещества обрыв цепей превалирует над разветвлением и смесь не воспламеняется. Ниже этой критической концентрации примеси может происходить воспламенение смеси. Теория позволяет рассчитать изменение концентраций активных центров во времени. Расчёты показывают, что вблизи максимума скорости цепного процесса концентрации активных центров могут достигать огромных величин, намного превышающих их термодинамически равновесные концентрации (очевидно, что к концу процесса концентрации активных центров становятся исчезающе малыми из-за рекомбинации атомов и радикалов). Действительно, в соответствии с теорией в различных разветвленных Ц. р. непосредственно обнаружены атомы и радикалы в концентрациях, сравнимых с концентрациями исходных веществ. Так, в процессе распада NCl 3 при комнатной температуре и низких давлениях концентрации промежуточных активных частиц - атомов хлора - достигают 40% от начального содержания NCI 3 .

В 1939 В. Н. Кондратьев ым с сотрудниками при изучении водородно-кислородного пламени, а затем Н. М. Эмануэлем (См. Эмануэль) на примере сероводородно-кислородного пламени впервые было показано, что концентрации активных центров в пламёнах на много порядков превышают их термодинамически равновесные значения. Позднее для идентификации атомов и радикалов в пламёнах В. В. Воеводским (См. Воеводский) с сотрудниками был впервые успешно использован метод электронного парамагнитного резонанса. Этот метод широко применяется при изучении различных разветвленных Ц. р.

Не исключено, что область химических процессов, протекающих по цепному разветвленному механизму, шире, чем обычно предполагается, и здесь много ещё неисследованного. Известно, например, что при большой скорости рекомбинации активных центров между собой процессы с разветвленными цепями могут имитировать закономерности реакций простых типов. В этих условиях цепной механизм нелегко установить. Это удалось сделать, например, в реакции жидкофазного окисления соединений двухвалентного олова.

Критические явления, в известной мере аналогичные описанным выше, наблюдаются в некоторых гетерогенно-каталитических реакциях.

Разветвленные Ц. р. - это не только химические и ядерные реакции. Явление когерентного излучения лазера, например, также относится к числу разветвленных цепных процессов.

Вырожденно-разветвлённые Ц. р. Реакции этого типа были предсказаны, открыты и затем подробно исследованы в институте химической физики АН СССР. При развитии неразветвлённых цепей часто образуется промежуточный молекулярный продукт типа перекисей, который сравнительно легко, но всё же не слишком быстро распадается на свободные радикалы, начинающие дополнительные новые цепи. В этом случае имеет место сильно запаздывающее разветвление и идёт медленная автоускоряющаяся реакция, названная вырожденно-разветвлённой. Такие реакции сопровождаются продолжительным, иногда часовым периодом индукции (вернее, периодом скрытого автоускорения). К ним относится окисление углеводородов и многих др. органических соединений. Многим вырожденно-разветвлённым реакциям в газовой и в жидкой фазах также свойственны предельные (критические) явления, но проявляются они не столь часто, как в обычных разветвленных Ц. р. Своеобразные реакции типа вырожденно-разветвлённых протекают и в твёрдых телах, например при медленном термическом разложении кристаллов перхлората аммония. В кристаллах непосредственное разложение исходных веществ крайне затруднено и начинается на дефектах, прежде всего на дислокациях (См. Дислокации), вдоль которых образуются конечные вещества - газы или твёрдые продукты. При реакциях в дислокациях возникают механические напряжения, порождающие новые дислокации; т. о. идёт их размножение, которое можно уподобить вырожденно-разветвлённой Ц. р.

Открытие разветвленных и вырожденно-разветвлённых Ц. р. имело исключительно большое значение для создания теории процессов горения. Было доказано, что существуют только два типа воспламенения: цепное и тепловое. Теория цепных процессов лежит в основе управления процессами горения (См. Горение) и играет большую роль в различных областях современной техники.

Лит.: Семенов Н. Н., Цепные реакции, [Л.], 1934; его же, О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; его же, Развитие теории цепных реакций и теплового воспламенения, М., 1969; его же. On the possible importance of excited states in the kinetics of chain reactions, в кн.: Douziéme conseil de chimie tenu a L"Université Libre de Bruxelles, N. Y. - Brux., 1962; Hinshelwood C. N., The kinetics of chemical change, Oxf., 1942; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1948; Эмануэль Н. М., Денисов Е. Т., Майзус З. К., Цепные реакции окисления углеводородов в жидкой фазе, М., 1965; Капралова Г. А. [и др.], Экспериментальные доказательства разветвлений в цепных реакциях молекулярного фтора, «Кинетика и катализ», 1963, т. 4, в. 4; Семенов Н. Н., Шилов А. Е., О роли возбужденных частиц в разветвленных цепных реакциях, «Кинетика и катализ», 1965, т. 6, в. 1; Кондратьев В. Н., Спектроскопическое изучение химических газовых реакций, М. - Л., 1944; Экспериментальные доказательства разветвлений в цепных реакциях молекулярного фтора. «Кинетика и катализ», 1963, т. 4, в. 4; Азатян В. В., Бородулин Р. Р., Маркович Е. А., Идентификация атомов хлора в разреженном пламени треххлористого азота, «Кинетика и катализ», 1974, т. 15, в. 6.

Н. Н. Семенов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Цепные реакции" в других словарях:

    Цепные реакции - ЦЕПНЫЕ РЕАКЦИИ, сложные химические реакции, в которых происходит образование активных частиц (атомов, свободных радикалов), вызывающих цепь превращений исходных веществ. Разветвленные цепные реакции могут стремительно самоускоряться (так… … Иллюстрированный энциклопедический словарь

    ЦЕПНЫЕ РЕАКЦИИ - ЦЕПНЫЕ РЕАКЦИИ, хим. реакции, каждый элементарный акт к рых с определенной, отличной от нуля вероятностью влечет за собой еще один элементарный акт. Этот второй акт с той же вероятностью повлечет за собой третий и т. д. Средняя длина (число… … Большая медицинская энциклопедия

    Сложные реакции, в которых промежуточные активные частицы, регенерируясь в каждом элементарном акте, вызывают большое число (цепь) превращений исходного вещества. В химических цепных реакциях (горение, полимеризация и др.) активные частицы… … Большой Энциклопедический словарь

    Сложные реакции, в которых промежуточные активные частицы, регенерируясь в каждом элементарном акте, вызывают большое число (цепь) превращений исходного вещества. В химических цепных реакциях (горение, полимеризация и др.) активные частицы … … Энциклопедический словарь

    Запрос «Цепная реакция» перенаправляется сюда; см. также другие значения. Цепные реакции химические и ядерные реакции, в которых появление активной частицы (свободного радикала или атома в химических, нейтрона в ядерных процессах) вызывает… … Википедия

    Цепные реакции - сложные реакции, в которых промежуточные активные частицы (свободный радикал в химических реакциях, нейтрон в ядерных процессах деления), регенерируясь в каждом элементарном акте, порождают большое число (цепь) превращений исходного вещества.… … Начала современного естествознания

    Хим. превращения и ядерные процессы, в к рых появление промежуточной активной частицы (свободного радикала, атома, возбужденной молекулы в хим. превращениях, нейтрона в ядерных процессах) вызывает цепь превращений исходных в в. Примеры хим. Ц. р … Химическая энциклопедия

Особый класс сложных многостадийных реакций представляют собой цепные реакции . Исходные вещества превращаются в продукты реакции в результате протекания ряда регулярно повторяющихся элементарных реакций с участием свободных радикалов и атомов. При протекании элементарного акта свободные радикалы взаимодействуют с молекулами реагентов с образованием продуктов реакции и новых радикалов.

Свободные радикалы (обозначаются R ) – отдельные атомы или молекулярные частицы, имеющие один или несколько неспаренных электронов. Поэтому, как правило, реакции с их участием имеют малую энергию активации – следствие повышенной реакционной способности. Взаимодействие радикалов между собой – безактивационный процесс, энергия активации которого равна нулю. Поэтому свободные радикалы обладают малым временем жизни и являются нестабильными промежуточными продуктами. Необходимо отметить, что известны и стабильные радикалы, например молекулы NO или ClO 2 .

В протекании цепной реакции (А®В) можно выделить три стадии: зарождение цепи, развитие цепи, обрыв цепи.

Зарождение цепи .Первая стадия цепной реакции – появление в реакционной смеси первичной активной частицы – радикала: А ® R 1 + R 2 .

Первичная активная частица может возникнуть в результате распада на радикалы отдельных молекул, например, вследствие термической или фотохимической диссоциации. Эта стадия характеризуется скоростью зарождения цепи (v 0) – числом свободных радикалов, появляющихся в единице объема в единицу времени.

Развитие цепи . На второй стадии происходит большое количество повторяющихся элементарных актов химического взаимодействия радикала с молекулами реагентов с образованием новых радикалов и продуктов реакции: А + R 1 ® R 2 + В. Эта стадия характеризуется длиной цепи g – числом актов взаимодействия от зарождения до обрыва цепи. По типу развития цепи реакции делятся на две основные группы:

1) неразветвленный цепной процесс. В ходе реакции взамен вступившего во взаимодействие радикала в элементарном акте образуется только одна новая активная частица. Общее число активных частиц на стадии развития цепи не изменяется;

2) разветвленный цепной процесс. В элементарном акте развития цепи образуется более чем одна активная частица. Число зарождающихся цепей будет нарастать, что приведет к резкому увеличению скорости реакции. Число активных частиц, образующихся в элементарном акте, называется «коэффициентом размножения» (n ). Очевидно, что для неразветвленного цепного процесса n =1, а для разветвленного n >1.

Обрыв цепи. Исчезновение активных частиц, например, в результате их взаимодействия друг с другом: R 1 + R 2 ® А.

Скорость накопления продуктов цепной реакции определяется скоростью зарождения цепи v 0 и длиной цепи g: v = g×v 0 .

Пример 1. Неразветвленный цепной процесс:

H 2 + Cl 2 ® 2HCl

зарождение цепи: Cl 2 + hn ® 2Cl H 2 + hn ® 2H

развитие цепи: Cl + H 2 ® HCl + H H + Br 2 ® HCl + Cl

обрыв цепи: Cl + H ® HCl Cl + Cl ® Cl 2 H + H ® H 2 .

Пример 2. Разветвленный цепной процесс:

2H 2 + O 2 ® 2H 2 O

зарождение цепи: H 2 + hn ® 2H O 2 + hn ® 2O

развитие цепи: H + O 2 ® OH + O O + H 2 ® OH + H

OH + H 2 ® H 2 O + H

обрыв цепи: OH + H ® H 2 O H + H ® H 2 O + O ® O 2 .

Рассмотрим факторы, влияющие на цепной процесс.

1. Появление активных частиц происходит либо в результате локального нагрева части реакционного объема (например, от искры электрического разряда), либо под воздействием квантов света или ионизирующего излучения. Зарождение цепи могут вызвать и специальные добавки – инициаторы (малоустойчивые вещества, легко распадающиеся с образованием радикалов).

2. Протекание реакции возможно, если скорость процесса развития цепи выше скорости ее обрыва. Поскольку скорость реакций пропорциональна концентрации реагентов, существует нижний концентрационный предел протекания цепной реакции (минимальная концентрация реагентов, при которой возможно протекание цепного процесса).

3. Прекращение цепного процесса происходит в результате исчезновения активных частиц в реакционной смеси. Уменьшение количества радикалов за счет рекомбинация при встрече только двух радикалов маловероятно, поскольку образующиеся молекулы находятся в возбужденном состоянии и легко распадаются на исходные радикалы. Для того чтобы этого не произошло, избыток энергии должен быть передан третьей частице (например, молекуле или стенке реакционного сосуда). Увеличение концентрации реагентов выше определенного предела приводит к увеличению вероятности тройных соударений и, соответственно, увеличению скорости обрыва цепи. Поэтому существует верхний концентрационный предел протекания цепного процесса (максимальная концентрация реагентов, при которой еще возможно протекание цепного процесса).

Вам также будет интересно:

Снится нижнее белье: что это означает К чему снится мокрое белье
Любое белье, увиденное во сне, означает нечто сокровенное, спрятанное сновидцем от...
Сонник рот, к чему снится рот, во сне рот
Или ягоды - он стремится к многочисленным сексуальным контактам, но только с очень...
Гороскоп на год скорпион девочка
Год огненного Петуха для Скорпионов будет полон неожиданностей и совершенно непредсказуемых...
Приснилась хромая кошка. Приснилась кошка. Что это значит? Сонник целительницы Федоровской
К чему снятся кошки — по соннику Миллера. К чему снятся гонять кошек , обычно все сонники...