Овощеводство. Садоводство. Декорирование участка. Постройки в саду

Очень вкусный борщ с капустой и томатной пастой Томатная паста для борща

Причастие в английском языке (The Participle) Независимый причастный оборот английский язык

Образец заполнения штатного расписания

Перевод внешнего совместителя на основное место работы

Габдулла Тукай: краткая биография

Сонник шептать на ухо девушке

Cонник шлепки токование сонника, к чему снится шлепки токование сонника во сне видеть К чему снится потерять шлепок

Блока «Я никогда не понимал» и А

Афанасий Афанасьевич Фет

Что такое биотоп и биоценоз в биологии?

Астения: симптомы, лечение Астено тревожный синдром что

Химические растворы Что такое гомогенный раствор

Организация и вооружение мотострелкового отделения Состав мотострелкового отделения на бтр

Финансовые ресурсы предприятий, их состав и характеристика В состав собственных финансовых ресурсов входят

Что такое секьюритизация в ипотеке Секьюритизация в рынке ценных бумаг

Два решения в одном: физики представили "вечную" алмазную батарею, созданную из радиоактивных отходов. Сколько лет этой мумии?: Как ученые датируют органические артефакты Радиоуглерод в живых организмах

Когда первичные космические лучи, неустанно бомбардирующие Землю, попадают в ядра атомов в атмосфере Земли, они создают большое число вторичных частиц — пионов, протонов, нейтронов, мюонов, электронов, позитронов и фотонов. При столкновении нейтрона с ядром азота-14 (7 протонов и 7 нейтронов) образуется ядро углерода-14 (6 протонов и 8 нейтронов) и высвобождается протон (ядро атома водорода, один протон и ноль нейтронов). Углерод-14 — радиоактивный элемент. Период его полураспада составляет пять тысяч семьсот лет.

Углерод-14, который создают космические лучи, вступает в реакцию с кислородом и образует углекислый газ, усваиваемый растениями в процессе фотосинтеза. Люди и животные едят растения и тоже получают углерод-14. Относительное содержание углерода-14 по отношению к «обычному» (углероду-12) в атмосфере остается примерно постоянным (приблизительно 1:109), и в живых организмах соотношение примерно такое же. Атомы углерода-14 постоянно распадаются на азот-14 (и электрон), но в организм регулярно поступают новые. Так что пропорция всегда сохраняется.

Но как только организм умирает, углерод в него поступать перестает. И если на момент смерти соотношение содержания углерода-14 и обычного углерода известно, то со временем оно меняется, так как углерод-14 распадается (период полураспада составляет около 5700 лет), а «обычный» углерод — нет. Таким образом, определив отношение содержания углерода-14 и углерода-12, при помощи следующей формулы можно довольно точно определить возраст останков найденного организма.

t = x t½

ln — это натуральный логарифм, No/Nf — соотношение содержания углерода-14 в живой ткани и его содержания в образце, а t½ — период полураспада углерода-14 (5700 лет). Таким образом, если в образце всего 5% от нормального содержания углерода-14, получаем:

ln (1/0,05) = 2,996

2,996/0,693 = 4,32

4,32х5700 = 24624 (года)

Так как период полураспада углерода-14 составляет всего 5700 лет, подобная датировка будет точной только для ископаемых организмов, возраст которых не превышает 40−60 тысяч лет. Но тот же принцип датировки применяется и на базе других элементов — таких как калий-40 (период полураспада составляет 1,3 млрд. лет), уран-235 (704 млн. лет), уран-238 (4,5 млрд. лет) и т. д. C помощью датирования по урану-238 геологи, например, довольно точно определяют возраст гранитов.

Радиоуглеродное датирование исходит из предположения, что количество углерода-14 в атмосфере на протяжении последних 40−60 тысяч лет остается примерно постоянным. На самом деле оно колеблется, и поэтому можно рассчитать лишь примерный возраст. Чтобы определить возраст образцов с большей точностью, требуется знать содержание углерода-14 в атмосфере для различных эпох. Эти данные получают, анализируя находки, возраст которых можно точно определить — например, деревья с годичными кольцами и т. п.

Единственная проблема заключается в том, что для объектов, умерших после 1940 года, когда человечество открыло для себя ядерную энергию, из-за выбросов радиоактивных веществ в атмосферу подобная датировка будет неточной.

Метод радиоуглеродного датирования был предложен в 1950 году Уиллардом Либби. В 1960-м за изобретение этого метода Либби получил Нобелевскую премию по химии.

Что такое полураспад

Все атомы радиоактивных изотопов подвержены радиоактивному распаду, в результате которого они превращаются в атомы других элементов. Глядя на данный конкретный атом, мы не смогли бы определить, когда он распадется. Но если взять большое количество таких атомов, можно с уверенностью сказать, что половина из них наверняка распадется в течение вполне определенного промежутка времени. Это время и называется временем полураспада радиоактивного изотопа.

Земля и ее атмосфера постоянно подвергаются радиоактивной бомбардировке потоками элементарных частиц из межзвездного пространства. Проникая в верхние слои атмосферы, частицы расщепляют находящиеся там атомы, способствуя высвобождению протонов и нейтронов, а также более крупных атомных структур. Содержащиеся в воздухе атомы азота поглощают нейтроны и высвобождают протоны. Эти атомы имеют, как и прежде, массу 14, но обладают меньшим положительным зарядом; теперь их заряд равен шести. Таким образом исходный атом азота превращается в радиоактивный изотоп углерода:

где n, N, С и р означают соответственно нейтрон, азот, углерод и протон.

Образование радиоактивных нуклидов углерода из атмосферного азота под воздействием космических лучей происходит со средней скоростью ок. 2,4 ат./с на каждый квадратный сантиметр земной поверхности. Изменения солнечной активности могут обусловить некоторые колебания этой величины.

Поскольку углерод-14 радиоактивен, он нестабилен и постепенно превращается в атомы азота-14, из которых образовался; в процессе такого превращения он выделяет электрон – отрицательную частицу, что и позволяет зафиксировать сам этот процесс.

Образование атомов радиоуглерода под воздействием космических лучей обычно происходит в верхних слоях атмосферы на высотах от 8 до 18 км. Подобно обычному углероду, радиоуглерод окисляется в воздухе, и при этом образуется радиоактивный диоксид (углекислый газ). Под воздействием ветра атмосфера постоянно перемешивается, и в конечном итоге радиоактивный углекислый газ, образовавшийся под воздействием космических лучей, равномерно распределяется в атмосферном углекислом газе. Однако относительное содержание радиоуглерода 14 C в атмосфере остается чрезвычайно малым – ок. 1,2ґ10 –12 г на один грамм обычного углерода 12 С.

Радиоуглерод в живых организмах.

Все растительные и животные ткани содержат углерод. Растения получают его из атмосферы, а поскольку животные поедают растения, в их организмы в опосредованной форме тоже попадает диоксид углерода. Таким образом, космические лучи являются источником радиоактивности всех живых организмов.

Смерть лишает живую материю способности поглощать радиоуглерод. В мертвых органических тканях происходят внутренние изменения, включая и распад атомов радиоуглерода. В ходе этого процесса за 5730 лет половина исходного числа нуклидов 14 C превращаются в атомы 14 N. Этот интервал времени называют периодом полураспада 14 С. Спустя еще один период полураспада содержание нуклидов 14 С составляет всего 1/4 их исходного числа, по истечении следующего периода полураспада – 1/8 и т.д. В итоге содержание изотопа 14 C в образце можно сопоставить с кривой радиоактивного распада и таким образом установить промежуток времени, истекший с момента гибели организма (его выключения из кругооборота углерода). Однако для такого определения абсолютного возраста образца необходимо допустить, что начальное содержание 14 С в организмах на протяжении последних 50 000 лет (ресурс радиоуглеродного датирования) не претерпевало изменений. На самом деле образование 14 С под воздействием космических лучей и его поглощение организмами несколько менялось. В результате измерение содержания изотопа 14 С в образце дает лишь приблизительную дату. Чтобы учесть влияние изменений начального содержания 14 С, можно использовать данные дендрохронологии о содержании 14 C в древесных кольцах.

Метод радиоуглеродного датирования был предложен У.Либби (1950). К 1960 датирование по радиоуглероду получило всеобщее признание, радиоуглеродные лаборатории были созданы по всему миру, а Либби был удостоен Нобелевской премии по химии.

Метод.

Образец, предназначаемый для радиоуглеродного анализа, следует брать с помощью абсолютно чистых инструментов и хранить в сухом виде в стерильном полиэтиленовом пакете. Необходима точная информация о месте и условиях отбора.

Идеальный образец древесины, древесного угля или ткани должен весить примерно 30 г. Для раковин желательна масса 50 г, а для костей – 500 г (новейшие методики позволяют, впрочем, определять возраст и по гораздо меньшим навескам). Каждый образец необходимо тщательно очистить от более древних и более молодых углеродсодержащих загрязнений, например, от корней выросших позже растений или от обломков древних карбонатных пород. За предварительной очисткой образца следует его химическая обработка в лаборатории. Для удаления инородных углеродсодержащих минералов и растворимых органических веществ, которые могли проникнуть внутрь образца, используют кислотный или щелочной раствор. После этого органические образцы сжигают, раковины растворяют в кислоте. Обе эти процедуры приводят к выделению газообразного диоксида углерода. В нем содержится весь углерод очищенного образца, и его иногда превращают в другое вещество, пригодное для радиоуглеродного анализа.

Традиционный метод требует гораздо менее громоздкого оборудования. Сначала применяли счетчик, определяющий состав газа и по принципу работы сходный со счетчиком Гейгера. Счетчик наполняли углекислым или иным газом (метаном либо ацетиленом), полученным из образца. Любой радиоактивный распад, происходящий внутри прибора, вызывает слабый электрический импульс. Энергия радиационного фона окружающей среды обычно колеблется в широких пределах, в отличие от радиации, вызванной распадом 14 С, энергия которого, как правило, близка к нижней границе фонового спектра. Весьма нежелательное соотношение фоновых величин и данных по 14 С можно улучшить путем изоляции счетчика от внешней радиации. С этой целью счетчик закрывают экранами из железа или высокочистого свинца толщиной в несколько сантиметров. Кроме того, стенки самого счетчика экранируют расположенными вплотную один к другому счетчиками Гейгера, которые, задерживая все космическое излучение, примерно на 0,0001 секунды дезактивируют и сам счетчик, содержащий образец. Метод экранирования сводит фоновый сигнал до нескольких распадов в минуту (образец древесины массой 3 г, относящийся к 18 в., дает ~40 случаев распада 14 С в минуту), что позволяет датировать довольно древние образцы.

Примерно с 1965 широкое распространение в датировании получил метод жидкостной сцинтилляции. При его использовании полученный из образца углеродсодержащий газ превращают в жидкость, которую можно хранить и исследовать в небольшом стеклянном сосуде. В жидкость добавляют специальное вещество – сцинтиллятор, – которое заряжается энергией электронов, высвобождающихся при распаде радионуклидов 14 С. Сцинтиллятор почти сразу испускает накопленную энергию в виде вспышек световых волн. Свет можно улавливать с помощью фотоумножительной трубки. В сцинтилляционном счетчике имеются две такие трубки. Ложный сигнал можно выявить и исключить, поскольку он послан лишь одной трубкой. Современные сцинтилляционные счетчики характеризуются очень низким, почти нулевым, фоновым излучением, что позволяет датировать с высокой точностью образцы возрастом до 50 000 лет.

Сцинтилляционный метод требует тщательной подготовки образцов, поскольку углерод должен быть превращен в бензол. Процесс начинается с реакции между диоксидом углерода и расплавленным литием, в результате которой образуется карбид лития. В карбид понемногу добавляют воду, и он растворяется, выделяя ацетилен. Этот газ, содержащий весь углерод образца, под действием катализатора превращается в прозрачную жидкость – бензол. Следующая цепочка химических формул показывает, как углерод в этом процессе переходит из одного соединения в другое:

Все определения возраста, полученные на основе лабораторного измерения содержания 14 С, называют радиоуглеродными датами. Они приводятся в количестве лет до наших дней (ВР), а за момент отсчета принимается круглая современная дата (1950 или 2000). Радиоуглеродные даты всегда приводят с указанием возможной статистической ошибки (например, 1760 ± 40 до ВР).

Применение.

Обычно для установления возраста события применяют несколько методов, особенно если речь идет о сравнительно недавнем событии. Возраст крупного, хорошо сохранившегося образца может быть установлен с точностью до десяти лет, но для неоднократного анализа образца требуется несколько суток. Обычно результат получают с точностью 1% от определяемого возраста.

Значение радиоуглеродного датирования особенно возрастает в случае отсутствия каких-либо исторических данных. В Европе, Африке и Азии ранние следы первобытного человека выходят за пределы времени, поддающегося радиоуглеродному датированию, т.е. оказываются старше 50 000 лет. Однако в рамки радиоуглеродного датирования попадают начальные этапы организации общества и первые постоянные поселения, а также возникновение древнейших городов и государств.

Радиоуглеродное датирование оказалось особенно успешным при разработке хронологической шкалы многих древних культур. Благодаря этому теперь возможно сравнивать ход развития культур и общества и устанавливать, какие группы людей первыми освоили те или иные орудия труда, создали новый тип поселений либо проложили новый торговый путь.

Определение возраста по радиоуглероду приобрело универсальный характер. После образования в верхних слоях атмосферы радионуклиды 14 С проникают в разные среды. Воздушные потоки и турбулентность в нижних слоях атмосферы обеспечивают глобальное распространение радиоуглерода. Проходя в воздушных потоках над океаном, 14 С попадает сначала в поверхностный слой воды, а затем проникает и в глубинные слои. Над материками дождь и снег приносят 14 С на земную поверхность, где он постепенно накапливается в реках и озерах, а также в ледниках, где может сохраняться на протяжении тысячелетий. Изучение концентрации радиоуглерода в этих средах пополняет наши знания о кругообороте воды в Мировом океане и о климате прошлых эпох, включая последний ледниковый период. Радиоуглеродный анализ остатков деревьев, поваленных наступавшим ледником, показал, что самый последний холодный период на Земле завершился примерно 11 000 лет назад.

Растения ежегодно усваивают диоксид углерода из атмосферы в период вегетации, и изотопы 12 С, 13 С и 14 С присутствуют в клетках растений примерно в той же пропорции, в какой они представлены в атмосфере. Атомы 12 С и 13 С содержатся в атмосфере в почти постоянной пропорции, но количество изотопа 14 С колеблется в зависимости от интенсивности его образования. Слои годового прироста, называемые древесными кольцами, отражают эти различия. Непрерывная последовательность годовых колец одного дерева может охватывать 500 лет у дуба и более 2000 лет у секвойи и остистой сосны. В аридных горных районах на северо-западе США и в торфяных болотах Ирландии и Германии были обнаружены горизонты со стволами мертвых деревьев разных возрастов. Эти находки позволяют объединить сведения о колебаниях концентрации 14 С в атмосфере на протяжении почти 10 000 лет. Правильность определения возраста образцов в ходе лабораторных исследований зависит от знания концентрации 14 С во время жизни организма. Для последних 10 000 лет такие данные собраны и обычно представляются в виде калибровочной кривой, показывающей разницу между уровнем атмосферного 14 С в 1950 и в прошлом. Расхождение между радиоуглеродной и калиброванной датами не превышает ±150 лет для интервала между 1950 н.э. и 500 до н.э. Для более древних времен это расхождение увеличивается и при радиоуглеродном возрасте в 6000 лет достигает 800 лет. См. также АРХЕОЛОГИЯ

Открытие

Углерод-14 является одним из природных радиоактивных изотопов. Первые указания на его существование были получены в 1936 году, когда британские физики У. Бёрчем и М. Голдхабер облучали медленными нейтронами ядра азота-14 в фотоэмульсии и обнаружили реакцию 14 N(n , p ) 14 C . В 1940 году углерод-14 смогли выделить американские физики Мартин Дэвид Кеймен и Самуэл Рубен, облучавшие на циклотроне графитовую мишень дейтронами ; 14 C образовывался в реакции 13 C(d , p ) 14 C . Его период полураспада был установлен позже (Мартин Кеймен в своих первых экспериментах получил 2700 и 4000 лет , Уиллард Либби в 1951 году принял период полураспада в 5568 ± 30 лет ). Современное рекомендованное значение периода полураспада 5700 ± 30 лет приведено в базе данных Nubase-2016 и основано на пяти экспериментах по измерению удельной активности, проведённых в 1960-х годах .

Образование

Углерод-14 образуется в верхних слоях тропосферы и стратосферы в результате поглощения атомами азота-14 тепловых нейтронов , которые в свою очередь являются результатом взаимодействия космических лучей и вещества атмосферы:

0 1 n + 7 14 N → 6 14 C + 1 1 H . {\displaystyle \mathrm {~_{0}^{1}n} +\mathrm {~_{7}^{14}N} \rightarrow \mathrm {~_{6}^{14}C} +\mathrm {~_{1}^{1}H} .}

Ещё один природный канал образования углерода-14 - происходящий с очень малой вероятностью кластерный распад некоторых тяжёлых ядер, входящих в радиоактивные ряды . В настоящее время обнаружен распад с эмиссией углерода-14 ядер 224 Ra (ряд тория), 223 Ra (ряд урана-актиния), 226 Ra (ряд урана-радия); предсказан, но экспериментально не обнаружен аналогичный процесс для других природных тяжёлых ядер (кластерная эмиссия углерода-14 обнаружена также для отсутствующих в природе нуклидов 221 Fr , 221 Ra , 222 Ra и 225 Ac). Скорость образования радиогенного углерода-14 по этому каналу пренебрежимо мала по сравнению со скоростью образования космогенного углерода-14 .

При испытаниях ядерного и особенно термоядерного оружия в атмосфере в 1940-1960-х годах углерод-14 интенсивно образовывался в результате облучения атмосферного азота тепловыми нейтронами от ядерных и термоядерных взрывов. В результате содержание углерода-14 в атмосфере сильно возросло (так называемый «бомбовый пик», см. рис.), однако впоследствии стало постепенно возвращаться к прежним значениям ввиду ухода в океан и прочие резервуары. Другой техногенный процесс, повлиявший на среднее отношение [ 14 C]/[ 12 C] в атмосфере, действует в направлении уменьшения этой величины: с началом индустриализации (XVIII век) значительно увеличилось сжигание угля, нефти и природного газа, то есть выброс в атмосферу древнего ископаемого углерода, не содержащего 14 C (так называемый эффект Зюсса) .

Ядерные реакторы, использующие воду в активной зоне, также являются источником техногенного загрязнения углеродом-14 .

Общее количество углерода-14 на Земле оценивается в 8500 петабеккерелей (около 50 тонн ), в том числе в атмосфере 140 ПБк (840 кг ). Количество углерода-14, попавшего в атмосферу и другие среды в результате ядерных испытаний, оценивается в 220 ПБк (1,3 тонны ) .

Распад

6 14 C → 7 14 N + e − + ν ¯ e . {\displaystyle \mathrm {~_{6}^{14}C} \rightarrow \mathrm {~_{7}^{14}N} +e^{-}+{\bar {\nu }}_{e}.}

Скорость распада не зависит от химических и физических свойств окружения. Грамм атмосферного углерода содержит около 1,5×10 −12 г углерода-14 и излучает около 0,6 бета-частиц в секунду за счёт распада этого изотопа. Следует отметить, что с этой же скоростью углерод-14 распадается и в человеческом теле; каждую секунду в организме человека происходит несколько тысяч распадов. Ввиду малой энергии образующихся бета-частиц мощность эквивалентной дозы внутреннего облучения, получаемого по этому каналу (0,01 мЗв /год, или 0,001 бэр /год), невелика по сравнению с мощностью дозы от внутреннего калия-40 (0,39 мЗв/год) . Средняя углерода-14 живой биомассы на суше в 2009 году составляла 238 Бк на 1 кг углерода, близко к значениям до бомбового пика (226 Бк/кг C ; 1950) .

Использование

Радиоизотопное датирование

Углерод-14 постоянно образуется в атмосфере из азота-14 под воздействием космических лучей. Для современного уровня космической активности можно оценить относительное содержание углерода-14 по отношению к «обычному» (углероду-12) в атмосфере как примерно 1:10 12 . Как и обычный углерод , 14 C вступает в реакцию с кислородом , образуя углекислый газ , который нужен растениям в процессе фотосинтеза . Люди и различные животные затем потребляют растения и изготовленные из них продукты в пищу, усваивая таким образом и углерод-14. При этом соотношения концентраций изотопов углерода [ 14 C]: [ 13 C]: [ 12 C] сохраняются практически такими же, как в атмосфере; изотопное фракционирование в биохимических реакциях изменяет эти соотношения лишь на несколько промилле, что может быть учтено .

В умершем живом организме углерод-14 постепенно распадается, а стабильные изотопы углерода остаются без изменений. То есть соотношение изотопов изменяется с течением времени. Это позволило использовать данный изотоп для установления возраста методом радиоизотопного датирования при датировании биоматериалов и некоторых неорганических образцов возраста до 60 000 лет . Наиболее часто используется в археологии, в ледниковой и постледниковой геологии, а также в физике атмосферы, геоморфологии, гляциологии, гидрологии и почвоведении, в физике космических лучей, физике Солнца и в биологии, не только для датировок, но и как трассер различных природных процессов .

В медицине

Используется для определения заражения желудочно-кишечного тракта Helicobacter pylori . Пациенту дают препарат мочевины с содержанием 14 C. В случае инфекции H.pylori бактериальный фермент уреазы разрушает мочевину в аммиак и радиоактивно меченый углекислый газ, который может быть обнаружен в дыхании пациента . Сегодня тест на основе меченых атомов 14 C стараются заменять на тест со стабильным 13 C, который не связан с радиационными рисками.

В России фармпрепараты на основе 14 C производит .

См. также

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A . - 2003. - Vol. 729 . - P. 337-676 . - DOI :10.1016/j.nuclphysa.2003.11.003 . - Bibcode : 2003NuPhA.729..337A .
  2. Audi G. , Kondev F. G. , Wang M. , Huang W. J. , Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. - 2017. - Vol. 41 , iss. 3 . - P. 030001-1-030001-138 . - DOI :10.1088/1674-1137/41/3/030001 . - Bibcode : 2017ChPhC..41c0001A .
  3. Burcham W. E. , Goldhaber M. The disintegration of nitrogen by slow neutrons (англ.) // Mathematical Proceedings of the Cambridge Philosophical Society. - 1936. - December (vol. 32 , no. 04 ). - P. 632-636 . - DOI :10.1017/S0305004100019356 .
  4. Kamen, Martin D. (1963). “Early History of Carbon-14: Discovery of this supremely important tracer was expected in the physical sense but not in the chemical sense”. Science . 140 (3567): 584-590. Bibcode :1963Sci...140..584K . DOI :10.1126/science.140.3567.584 . PMID .
  5. Martin David Kamen. «Radiant science, dark politics: a memoir of the nuclear age».
  6. Bé M.M., Chechev V. P. 14 C - Comments on evaluation of decay data (неопр.) . www.nucleide.org . LNHB. Дата обращения 8 июня 2018. Архивировано 22 ноября 2016 года.
  7. Kovaltsov G. A., Mishev A., Usoskin I. G. (2012). “A new model of cosmogenic production of radiocarbon 14 C in the atmosphere”. Earth and Planetary Science Letters . 337-338: 114-120. arXiv :1206.6974 .
Все обо всем. Том 5 Ликум Аркадий

Как используют углерод-14 для определения возраста предметов?

Все живые существа содержат углерод. В их состав также входит небольшое количество углерода-14, радиоактивной разновидности углерода. Используя углерод-14, ученые могут определить возраст дерева, предметов одежды и всего, что было когда-то живым. Использование углерода-14 с этой целью называется установлением возраста радиоактивным путем. Радиоактивный углерод помогает определить возраст предметов, которым до 50 000 лет. Скорость, с которой распадаются радиоактивные элементы, называется периодом полураспада.

Период полураспада - это время, за которое распадается половина атомов элемента. Период полураспада углерода-14 около 5500 лет. Это означает, что через 5500 лет после смерти животного или растения в погибших организмах останется только половина находившегося в них первоначально атомов углерода-14. После 11 000 лет только четверть, через 16 500 лет - восьмая часть изначального количества и так далее.

Предположим, что в древней гробнице обнаружен кусок старого дерева. В лаборатории его можно нагреть и превратить в углерод, или сжечь с выделением различных газов, содержащих углекислый газ. Углерод или углекислый газ содержат несколько атомов углерода-14. Эти атомы распадаются. При распаде крохотные частички с большой скоростью покидают атом. Углерод или углекислый газ помещают в очень чувствительный прибор, который называется счетчиком Гейгера. Он учитывает частички, отдаваемые атомами углерода-14. Исходя из количества этих частичек, ученые делают заключение о количестве углерода-14 в образце.

Ученые знают, какое количество углерода-14 содержится в таком же количестве живого дерева. Сравнивая эту с цифру с количеством углерода-14, оставшегося в древнем образце, ученые называют возраст дерева. Например, если найденное древнее дерево содержит половину от количества атомов углерода-14, содержащегося в живом дереве, то образцу около 5500 лет.

Из книги Большая Советская Энциклопедия (УГ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЧЕ) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Как законы Менделя используют в тестах на установление отцовства? Генетики установили, что все четыре группы крови передаются по наследству в полном соответствии с законами Менделя. По всей видимости, существуют три аллели (возможные структурные состояния гена),

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Почему в США (в отличие от России) не используют название «никотиновая кислота»? Ассоциацию американских врачей обеспокоил тот факт, что из-за схожести названий никотиновой кислоты и никотина общественность может решить, что табак является источником витаминов. Поэтому

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Почему для передачи и распределения электрической энергии используют преимущественно переменный ток, а не постоянный? На заре электроэнергетики, когда маломощные генераторы электрического тока располагались на небольших расстояниях от потребителей (нередко в

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

В какой стране наиболее интенсивно используют сталь? В этом отношении лидером является Япония. По статистическим данным, на конец ХХ века в среднем за год расходуется в виде различных изделий (считая арматуру для железобетона, пошедшего на строительство разных

Из книги Все обо всем. Том 5 автора Ликум Аркадий

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Как используют промышленный мусор в Японии? Промышленный мусор в Японии используют весьма оригинально: из него возводят искусственные острова в

Из книги Я познаю мир. Криминалистика автора Малашкина М. М.

Что такое углерод? Углерод - это химический элемент, имеющий чрезвычайно важное значение для любого живого существа. Во всей материи, существующей на Земле, на его долю приходится менее одного процента, однако он содержится в любом организме, живом или уже мертвом. Тело

Из книги Кто есть кто в мире природы автора Ситников Виталий Павлович

Как давно люди используют дерево в качестве строительного материала и топлива? Самое древнее свидетельство применения дерева в качестве строительного материала обнаружено в окрестностях водопада Каламбо в Танзании. Возраст этой находки оценивают приблизительно в 60

Из книги Спецслужбы и войска особого назначения автора Кочеткова Полина Владимировна

Как используют углерод-14 для определения возраста предметов? Все живые существа содержат углерод. В их состав также входит небольшое количество углерода-14, радиоактивной разновидности углерода. Используя углерод-14, ученые могут определить возраст дерева, предметов Из книги автора

Как используют кацусту? В промышленности разные сорта капусты применяют при изготовлении детского питания, производства полуфабрикатов супов, готовых блюд. В домашних условиях капуста незаменима для приготовления разнообразнейших кушаний, входит в состав многих

Из книги автора

«ЕСЛИ ТЫ НЕ ИСПОЛЬЗУЕШЬ ДРУГИХ ЛЮДЕЙ, ОНИ ИСПОЛЬЗУЮТ ТЕБЯ…» Советский представитель в ООН оказался «кротом» ЦРУ Предлагаемые вашему вниманию отрывки из книги «Любовница перебежчика» принадлежат перу Джуди Чейвез - профессиональной проститутки, за услуги которой

Период полураспада этого элемента составляет почти шесть тысяч лет, то есть даже половину своей мощности батарея потеряет лишь через тысячи лет, отмечается в пресс-релизе .

По словам разработчиков, устройство также поможет в утилизации ядерных отходов, поскольку источником углерода-14 являются графитовые стержни ядерных реакторов.

Используемые сегодня традиционные радиоактивные батареи (или радиоизотопные термоэлектрические генераторы - РИТЭГи) работают благодаря теплу, которое выделяется в ходе распада радиоактивных элементов.

В разных точках такого "аккумулятора" создаётся разница температур, и термоэлектрический эффект позволяет преобразовать эту разницу в электричество.

У таких установок КПД составляет 4-5% — эффективность небольшая, но зато они способны работать в течение очень долгого времени. К примеру, РИТЭГ на основе плутония-238 снабжает энергией аппарат "Вояджер-2" , который до сих пор передаёт на Землю радиосигналы. Напомним, что он находится в полёте с 1977 года и его нынешнее удаление от Солнца превышает 111 астрономических единиц.

Кроме плутония-238 в РИТЭГах используется стронций-90, изотопы кюрия, полония и другие радиоактивные частицы - все они являются частью радиоактивных отходов.

Существуют, кроме того, электрогенераторы другого типа - бета-вольтаические (betavoltaics). Они работают благодаря энергии, генерируемой при радиоактивных распадах. Концепция именно их работы и вдохновила британских физиков. В устройствах этого типа при взаимодействии с электронами, выброшенными ядрами при бета-распаде, образуются пары электрон-дырка, и они напрямую конвертируются в электрический ток.

Традиционно для бета-вольтаических генераторов используется тритий. Однако исследователи в своей новой работе предложили заменить его углеродом-14 из графитовых стержней (элементы уран-графитового ядерного реактора, которые также подлежат утилизации после работы).

В работе ядерного реактора графитовые стержни эксплуатируются в виде сборок (до 180 стержней вместе и более). Их опускают и поднимают из активной зоны, чтобы регулировать интенсивность течения ядерной реакции. При этом графитовые стержни насыщаются изотопом углерода-14.

Отслеживая работу ядерного реактора, физики обратили внимание, что углерод-14 концентрируется в основном на внешних областях стержней — там, где рядом с ними располагаются урановые стержни. Нужный материал можно эффективно получать путём нагрева, при этом графитовые стержни лишаются части опасной радиоактивности (испускаемые частицы не пробегут и нескольких сантиметров в воздухе, но всё же такое вещество опасно для природы).

Выделенный углерод-14 можно использовать для выращивания искусственных алмазов, применив осаждение из газовой фазы .

Поскольку алмазы способны эффективно преобразовывать ионизирующее излучение в слабый ток, их даже предложили использовать как детекторы радиации - производительность должна быть невероятно высока.

Бета-частицы, испускаемые углеродом-14, взаимодействуя с кристаллической решёткой алмаза, будут порождать электроны. В результате чего и генерируется электричество.

По словам физиков, обезопасить такой бета-вольтаический элемент можно будет, покрыв "радиоактивный" алмаз с углеродом-14 обычной (нерадиоактивной) алмазной плёнкой, которая сдержит вредное излучение.

Поскольку период полураспада углерода-14 составляет 5730 лет, элемент на его основе сможет проработать беспрецедентно долго (через пять тысячелетий он всё ещё будет выдавать половину мощности).

Ранее подобные батареи создавались с использованием никеля-63, а также карбида кремния. В первом случае удельная мощность элемента, может, была бы и немаленькой, однако период полураспада никеля-63 составляет сто лет (к слову, разработка принадлежит учёным МИСиС). А во втором случае речь может идти лишь о питании маломощных датчиков.

Предложенный способ должен стать относительно недорогим: по приблизительным подсчётам, британские АЭС за десятилетия работы оставили почти сто тысяч тонн использованных графитовых стержней. Экологические преимущества метода также очевидны: вреда для окружающей среды в этом случае практически не будет.

"Вечные" батарейки, по мнению учёных, можно будет использовать в космической отрасли, а также в медицине (например, для питания имплантатов). Так как прямого контакта радиоактивного вещества с кожей или внутренними органами не будет (а поломать оболочку пусть и искусственного алмаза практически невозможно - это один из самых твёрдых материалов в мире), то такие "аккумуляторы" будут полностью безопасны для человека.

Добавим, что радиоактивный распад углерода-14 сегодня активно применяется в археологии для датировки различных объектов биологического происхождения (так называемый метод радиоуглеродного анализа). Возраст объектов определяется по количеству оставшихся в артефактах изотопов углерода.

Вам также будет интересно:

Облигации военного займа 1941 1945
Еще в первые годы Советской власти после отражения иностранной военной интервенции и...
Международный Клуб Учёных Кто был по знаку зодиака иисус христос
В нашем обществе не так много людей, всерьез верящих в астрологические и другие подобные...
Астрологические циклы и ритмы Планетарные циклы в жизни человека
Звездное небо - гадательный прибор, доступный каждому. Внимательно наблюдая за небом,...
Листовая свекла мангольд Мангольд когда начинать кушать и какие части
Мангольд, или японская свёкла, вместе со свёклами столовой, сахарной и кормовой имеет...
Какие блюда можно приготовить из чечевицы просто и вкусно Простые блюда из красной чечевицы
Современные хозяйки незаслуженно обделяют своим вниманием рецепты блюд из чечевицы. Просто...